Advertisement

Carbon Nanotube Electronics and Optoelectronics

  • Ph. Avouris
  • M. Radosavljević
  • S.J. Wind
Part of the NanoScience and Technology book series (NANO)

Abstract

In this chapter, we review progress to date in carbon nanotube electronics and optoelectronics. We discuss the underlying physics of CNT-FETs, highlighting the similarities and differences relative to conventional silicon metal-oxide-semiconductor field-effect transistors (MOSFETs), and we examine how these affect CNT-FET electrical characteristics. As device scaling is the key technology driver in today's semiconductor technology, we explore how CNT-FETs behave when scaled to smaller dimensions and the impact this scaling behavior may have on their suitability for technological insertion. We look at results achieved to date on simple CNT-based circuits, and we consider the requirements of more complex architectures. Finally, we discuss the optoelectronic properties of CNTs and show that CNT-FETs can also be used as light emitting and light decoding devices.

Keywords

Schottky Barrier Subthreshold Slope Gate Oxide Thickness Ambipolar Conduction Metallic CNTs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbon Nanotubes, M. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Eds., Springer-Verlag (Berlin, 2001)Google Scholar
  2. 2.
    M.S. Dresselhaus, G. Dresselhaus, and R. Saito, Phys. Rev. B 45, 6234 (1992)CrossRefGoogle Scholar
  3. 3.
    J.W. Mintmire, B.I. Dunlap, and C.T. White, Phys. Rev. Lett. 68, 631 (1992)CrossRefPubMedGoogle Scholar
  4. 4.
    R. Landauer, Philos. Mag. 21, 863 (1970)Google Scholar
  5. 5.
    T. Ando, J. Phys. Soc. Japan 66, 1066 (1996)CrossRefGoogle Scholar
  6. 6.
    D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, Nano Lett. 3, 1541 (2003)CrossRefGoogle Scholar
  7. 7.
    Z. Yao, C.L. Kane, and C. Dekker, Phys. Rev. Lett., 61, 2941 (2000)CrossRefGoogle Scholar
  8. 8.
    J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T.A. Arias, D.W. Brouwer, and P.L. McEuen, Nano Lett. 4, 517 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Javey, J. Guo, M. Paulson, Q. Wang, D. Mann, M. Lundstrom and H. Dai, Phys. Rev. Lett. 92, 106804–1 (2004)CrossRefPubMedGoogle Scholar
  10. 10.
    P.G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris, Phys. Rev. Lett. 86, 3128 (2001)CrossRefPubMedGoogle Scholar
  11. 11.
    S.J. Wind, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 91, 058301 (2003)CrossRefPubMedGoogle Scholar
  12. 12.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H.J. Dai, Nature 424, 654 (2003)CrossRefPubMedGoogle Scholar
  13. 13.
    Y. Yaish, J.Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, and P.L. McEuen, Phys. Rev. Lett. 92, 046401 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    F. Leonard, and J. Tersoff, Phys. Rev. Lett. 83, 5174 (1999)CrossRefGoogle Scholar
  15. 15.
    Ph. Avouris, J. Appenzeller, R. Martel, and S.J. Wind, Proc. of the IEEE 91, 1772 (2003)CrossRefGoogle Scholar
  16. 16.
    S.J. Tans, A.R.M. Verschueren, and C. Dekker, Nature 393, 49 (1998)CrossRefGoogle Scholar
  17. 17.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)CrossRefGoogle Scholar
  18. 18.
    H.T. Soh, C.F. Quate, A.F. Morpurgo, C. marcus, J. Kong, and H. Dai, App. Phys. Lett. 75, 627 (1999)CrossRefGoogle Scholar
  19. 19.
    R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 87, 256805 (2001)CrossRefPubMedGoogle Scholar
  20. 20.
    R. Martel, H.-S.P. Wong, K. Chan, and Ph. Avouris, in International Electron Devices Meeting 2001: IEDM Technical Digest (IEEE, Piscataway, N.J., 2001), p. 159.Google Scholar
  21. 21.
    P.L. McEuen, M.S. Fuhrer and H. Park, IEEE Trans. Nanotechnol. 1, 78 (2002), and references therein.CrossRefGoogle Scholar
  22. 22.
    M. Bockrath, J. Hone, A. Zettl, P.L. McEuen, A.G. Rinzler, and R.E. Smalley, Phys. Rev. B 61, R10606 (2000)CrossRefGoogle Scholar
  23. 23.
    V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Nano Lett. 1, 453 (2001)CrossRefGoogle Scholar
  24. 24.
    X. Liu, C. Lee, C. Zhou, and J. Han, Appl. Phys. Lett. 79, 3329 (2001)CrossRefGoogle Scholar
  25. 25.
    V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Appl. Phys. Lett. 80, 2773 (2002)CrossRefGoogle Scholar
  26. 26.
    S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, and Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002)CrossRefGoogle Scholar
  27. 27.
    J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S.J. Wind, and Ph. Avouris, IEEE Trans. Nanotechnol. 1, 184 (2002)CrossRefGoogle Scholar
  28. 28.
    A. Javey, H. Kim, M. Brink, Q. Wang et al. Nature Materials 1, 241 (2002)CrossRefPubMedGoogle Scholar
  29. 29.
    M. Radosavljevic, J. Appenzeller, Ph. Avouris, and J. Knoch, Appl. Phys. Lett. 84, 3693 (2004)CrossRefGoogle Scholar
  30. 30.
    P.G. Collins, M.S. Arnold, and Ph. Avouris, Science 292, 706 (2001)CrossRefPubMedGoogle Scholar
  31. 31.
    Y._-C. Tseng, P. Xuan, A. Javey, R. Malloy, Q. Wang, J. Bokor, H. Dai, Nano Lett. 4, 123 (2004)CrossRefGoogle Scholar
  32. 32.
    E.S. Snow, J.P. Novak, P.M. Campbell, and D. Park, Appl. Phys. Lett. 82, 2145 (2003)CrossRefGoogle Scholar
  33. 33.
    A. Rochefort, M. Di Ventra, and Ph. Avouris, Appl. Phys. Lett. 78, 2521 (2001)CrossRefGoogle Scholar
  34. 34.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edition (John Wiley & Sons, 1981)Google Scholar
  35. 35.
    A. Javey, Q. Wang, W. Kim, and H. Dai, in International Electron Devices Meeting 2003: IEDM Technical Digest (IEEE, Piscataway, N.J., 2003), p. 741.Google Scholar
  36. 36.
    J. Appenzeller, M. Radosavljevic, J. Knoch, and Ph. Avouris, Phys. Rev. Lett. 92, 048301 (2004)CrossRefPubMedGoogle Scholar
  37. 37.
    J. Appenzeller, J. Knoch, V. Derycke, R. Martel, S.J. Wind, and Ph. Avouris, Phys. Rev. Lett. 89, 126801 (2002)CrossRefPubMedGoogle Scholar
  38. 38.
    S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, Phys. Rev. Lett. 89, 106801 (2002)CrossRefPubMedGoogle Scholar
  39. 39.
    M. Freitag, M. Radosavljevic, Y.X. Zhou, A.T. Johnson, and W.F. Smith, Appl. Phys. Lett. 79, 3326 (2001)CrossRefGoogle Scholar
  40. 40.
    T. Durkop, S.A. Getty, E. Cobas, and M.S. Fuhrer, Nano Lett. 4, 35 (2004)CrossRefGoogle Scholar
  41. 41.
    S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazanova, and P.L. McEuen, Nano Lett. 2, 869 (2002)CrossRefGoogle Scholar
  42. 42.
    A. Thess, R. Lee, P. Nikolaev. H. Dai, P. Petit, J. Robert, X. Chunhui, L.Y. Hee, K. Seong Gon, A.G. Rinzler, and D.T. Colbert, Science 273, 483 (1996)PubMedGoogle Scholar
  43. 43.
    P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, and R.E. Smalley, Chem. Phys. Lett. 313, 91 (1999)CrossRefGoogle Scholar
  44. 44.
    International Technology Roadmap for Semiconductors, 2003 edition. (See also http://public.itrs.net)Google Scholar
  45. 45.
    S. Heinze, J. Tersoff and Ph. Avouris, Appl. Phys. Lett. 83, 5038 (2003)CrossRefGoogle Scholar
  46. 46.
    Y.-M. Lin, J. Appenzeller and Ph. Avouris, Nano Lett. 4, 947 (2004)CrossRefGoogle Scholar
  47. 47.
    X.D. Cui, M. Freitag, R. Martel, L. Brus, and Ph. Avouris, Nano Lett. 3, 783 (2003)CrossRefGoogle Scholar
  48. 48.
    S. Heinze, M. Radosavljevic, J. Tersoff and Ph. Avouris, Phys. Rev. B 68, 235418 (2003)CrossRefGoogle Scholar
  49. 49.
    T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, and C.M. Lieber, Science 289, 94 (2000)CrossRefPubMedGoogle Scholar
  50. 50.
    J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, and H.J. Dai, Science, 287, 622 (2000)CrossRefPubMedGoogle Scholar
  51. 51.
    A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, Science 294, 1317 (2001)CrossRefPubMedGoogle Scholar
  52. 52.
    A. Javey, Q. Wang, A. Ural, Y.M. Li, and H.J. Dai, Nano Lett. 2, 929 (2002)CrossRefGoogle Scholar
  53. 53.
    D.J. Frank, and J. Appenzeller, IEEE Electr. Device Lett. 25, 34 (2004)CrossRefGoogle Scholar
  54. 54.
    T.G. Pedersen, Phys. Rev. B 67, 073401 (2003)CrossRefGoogle Scholar
  55. 55.
    C.L. Kane and E.J. Mele, Phys. Rev. Lett. 90, 207401 (2003)CrossRefPubMedGoogle Scholar
  56. 56.
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie, Phys. Rev. Lett. (2004)Google Scholar
  57. 57.
    V. Perebeinos, J. Tersoff, and Ph. Avouris, Phys. Rev. Lett. 92, 257402 (2004)CrossRefPubMedGoogle Scholar
  58. 58.
    M. Ishida, S. Mizuno, T. Yoshihino, Y. Saito, and A. Nakamura, J. Phys. Soc. Jpn. 68, 3131 (1999)CrossRefGoogle Scholar
  59. 59.
    R. Saito and H. Kataura in M. Dresslahus, G. Dresselhaus and Ph. Avouris, Eds., Carbon Nanotubes, Springer-Verlag (Berlin, 2001), pages 213–246.Google Scholar
  60. 60.
    M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.E. Smalley, and R.B. Weisman, Science 297, 2361 (2002)CrossRefGoogle Scholar
  61. 61.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman, Science 298, 2361 (2002)CrossRefPubMedGoogle Scholar
  62. 62.
    A. Hagen and T. Hertel, Nano Lett. 3, 383 (2003)CrossRefGoogle Scholar
  63. 63.
    A. Hartschuh, H.N. Pedrosa, L. Novotny and T.D. Krauss, Science 301, 1354 (2003)CrossRefPubMedGoogle Scholar
  64. 64.
    J. Lefebvre, Y. Homma, and P. Finnie, Phys. Rev. Lett. 90, 217401 (2003)CrossRefPubMedGoogle Scholar
  65. 65.
    G. Strinati, Phys. Rev. B 29, 5718 (1984)CrossRefGoogle Scholar
  66. 66.
    O.J. Korovyanlo, C.-X Sheng, Z.V. Vardeny, A.B. Dalton, and R.H. Baughman,. Phys. Rev. Lett. 92, 017403 (2004)CrossRefPubMedGoogle Scholar
  67. 67.
    X. Qiu, M. Freitag, V. Perebeinos, and Ph. Avouris, Nano Lett. 5, 749 (2005)CrossRefPubMedGoogle Scholar
  68. 68.
    A. Fujuwara, Y. Matsuoka, H. Suematsu, N. Ogata, et al. Jpn. J. Appl. Phys., Part 1 40, L1229 (2001)CrossRefGoogle Scholar
  69. 69.
    Y. Yamada, N. Naka, N. Nagasawa, Z.M. Li, and Z.K. Tang, Physica B 323, 239 (2002)CrossRefGoogle Scholar
  70. 70.
    Y. Zhang and S. Iijima, Phys. Rev. Lett. 82, 3472 (1999)CrossRefGoogle Scholar
  71. 71.
    M. Freitag, Y. Martin, J.A. Misewich, R. Martel, and Ph. Avouris, Nano Lett. 3, 1067 (2003)CrossRefGoogle Scholar
  72. 72.
    J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, and J. Tersoff, Science 300, 783 (2003)CrossRefPubMedGoogle Scholar
  73. 73.
    M. Radosavljevic, S. Heinze, J. Tersoff and Ph. Avouris, Appl. Phys. Lett. 83, 2435 (2003)CrossRefGoogle Scholar
  74. 74.
    M. Freitag, J. Chen, A. Stein, T. Tsang, J. Misewich, R. Martel, V. Perebeinos, and Ph. Avouris, Nano Lett. 4, 1063 (2004)CrossRefGoogle Scholar
  75. 75.
    M. Freitag, J. Chen, J. Tsang, Q. Fu, J. Liu and Ph. Avouris, Phys. Rev. Lett. 93, 076803 (2004)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ph. Avouris
  • M. Radosavljević
  • S.J. Wind

There are no affiliations available

Personalised recommendations