Elastic Continuum Models of Phonons in Carbon Nanotubes

  • A. Raichura
  • M. Dutta
  • M.A. Stroscio
Part of the NanoScience and Technology book series (NANO)


In this chapter, elastic continuum models are used to describe phonons in carbon nanotubes and vibrational modes in biological structures. Based on elastic continuum theory, acoustic vibrational modes are modeled for both zigzag and armchair nanotubes of finite length using a variational solution of Donnell's equation. The acoustic phonon modes in these calculations are determined for both even and odd modes of the acoustic displacement. The dispersion relations vary with the length of the tube. The displacement field of the nanotube is used to calculate the deformation potential interaction Hamiltonian. In addition, the optical vibrational modes are derived for finite length nanotubes in the elastic continuum approximation. A quantum mechanical normalization prescription is applied to facilitate the determination of the optical phonon modes. The dispersion relation is calculated based on the continuum approach and the quantum normalized amplitude is used to calculate the optical deformation potential. These fully three-dimensional elastic continuum models are compared with other approaches to modeling phonons in carbon nanotubes such as the popular zone-folding technique. In a related underlying topic, the applicability of continuum models for the analysis of nanoscale structures is demonstrated for the case fullerenes. It is shown that the b2 elongation mode of C60 may be described within the continuum approximation. Indeed, for these fullerene structures, the frequencies of selected vibrational modes are predicted to within a few percent.


Carbon Nanotubes Dispersion Curve Deformation Potential Elastic Continuum Optical Phonon Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.R. Falvo et al: Nature (London) 389, 582 (1997)CrossRefPubMedGoogle Scholar
  2. 2.
    Z. Yao, H.W.C. Postma, L. Balents, and C. Dekker: Nature (London) 402, 273 (1999)CrossRefGoogle Scholar
  3. 3.
    Z.K. Tang et al: Science 292, 2462 (2001)CrossRefPubMedGoogle Scholar
  4. 4.
    T.W. Odom, J.L. Huang, P. Kim, and C.M. Leiber: Nature (London) 391, 62 (1998)CrossRefGoogle Scholar
  5. 5.
    Jing Guo, Sebastian Goasguen, Mark Lundstrom, and Supriyo Datta: Appl. Phys. Lett. 81, 1486 (2002)CrossRefGoogle Scholar
  6. 6.
    Jing Guo, Mark Lundstrom, and Supriyo Datta: Appl. Phys. Lett. 80, 3192 (2002)CrossRefGoogle Scholar
  7. 7.
    J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, J, Tersoff: Science 300,783 (2003)CrossRefPubMedGoogle Scholar
  8. 8.
    R.A. Jishi, L. Venkataraman, M.S. Dresselhaus and G. Dresselhaus: Chem. Phys. Lett. 209,77 (1993)CrossRefGoogle Scholar
  9. 9.
    J. Yu, R.K. Kalia and P. Vashista: J. Chem. Phys. 103, 6697 (1995)CrossRefGoogle Scholar
  10. 10.
    M. Menon, E. Ritcher and K.R. Subbaswamy: J. Chem. Phys. 104, 5875 (1996)CrossRefGoogle Scholar
  11. 11.
    D.H Robertson, D.W. Brenner and J.W. Mintmire: Phys Rev. B. 45, 12592 (1992)CrossRefGoogle Scholar
  12. 12.
    J.P. Lu, Phys. Rev. Lett. 79: 1297 (1997)CrossRefGoogle Scholar
  13. 13.
    Daniel Sanchez-Portal, Emilio Artacho, Jose M. Soler, Angel Rubio, and Pablo Oedejon: Phys. Rev. B 59, 12678 (1999)CrossRefGoogle Scholar
  14. 14.
    C. Trallero-Giner, F. Garcya-Moliner, V. Velasco, and M. Cardona: Phys. Rev. B 45, 11944 (1992)CrossRefGoogle Scholar
  15. 15.
    T.D. Krauss and F.W. Wise: Phys. Rev. Lett. 79, 5102 (1997)CrossRefGoogle Scholar
  16. 16.
    J.H. Hodak, A. Henglien, and G.V. Hartland: J. Chem. Phys. 111, 8613 (1999)CrossRefGoogle Scholar
  17. 17.
    M.A. Stroscio and M. Dutta: Phys. Rev. B 60, 7722 (1999); M.A. Stroscio and Mitra Dutta: Phonons in Nanostructures (Cambridge University Press, Cambridge 2001)CrossRefGoogle Scholar
  18. 18.
    L.T. Chadderton: J. Phys. Chem. Solids 54, 1027 (1993)CrossRefGoogle Scholar
  19. 19.
    X. Xiaoyu, L. Ji-Xing, and O.Y. Zhong-Can: Mod. Phys. Lett. 9, 1649 (1995)CrossRefGoogle Scholar
  20. 20.
    H. Kraus: Thin Elastic Shells (Wiley, New York 1967)Google Scholar
  21. 21.
    Daniel Kahn, K.W. Kim and Michael A. Stroscio: Journal of Appl. Phys. 89, 5107 (2001)CrossRefGoogle Scholar
  22. 22.
    Hidekatsu Suzurra and Tsuneya Ando: Phys. Rev. B 65, 235412 (2002)CrossRefGoogle Scholar
  23. 23.
    Amit Raichura, Mitra Dutta and Michael A. Stroscio: Journal of Appl. Phys. 94, 4060 (2003)CrossRefGoogle Scholar
  24. 24.
    Philip G. Collins, M. Hersam, M. Arnold, R. Martel, and Ph. Avouris: Phys. Rev. Lett. 86, 3128 (2001)CrossRefPubMedGoogle Scholar
  25. 25.
    M.A. Stroscio, Mitra Dutta, Daniel Kahn, and Ki Wook Kim: Superlatt. Microstruct. 29, 405–409 (2001)CrossRefGoogle Scholar
  26. 26.
    Max Born and Kun Huang: Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford 1954)Google Scholar
  27. 27.
    Karl Hess: Advanced Theory of Semiconductor Devices (Prentice Hall, NJ 1988)Google Scholar
  28. 28.
    Zhen Yao, Charles L. Kane, and Cees Dekker: Phys. Rev. Lett. 84, 2941 (2000)CrossRefPubMedGoogle Scholar
  29. 29.
    Daniel Kahn, K.W. Kim, and Michael A. Stroscio: Journal of Appl. Phys. 89, 5107 (2001)CrossRefGoogle Scholar
  30. 30.
    W.E. Baker: J. Acoust. Soc. Am. 33, 1749 (1961)CrossRefGoogle Scholar
  31. 31.
    L.T. Chadderton: J. Phys. Chem. Solids 54, 1027 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Raichura
  • M. Dutta
  • M.A. Stroscio

There are no affiliations available

Personalised recommendations