Advertisement

Index Analysis for Singular PDE Models of Fuel Cells

  • K. Chudej
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 8)

Summary

A generalized deffinition is given for the time index and a new prototype example is introduced, which serves as a general case for the computation of the time index for a hierarchy of molten carbonate fuel cell models, including a 2D model. The time indices are computed by a new approach using linear integral equations.

Key words

Singular PDE partial differential-algebraic equations PDAE time index fuel cell MCFC integral equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Chudej, P. Heidebrecht, V. Petzet, S. Scherdel, Schittkowski, K., H.J. Pesch, and K. Sundmacher. Index analysis and numerical solution of a large scale nonlinear PDAE system describing the dynamical behaviour of molten carbonate fuel cells. Z. Angew. Math. Mech., accepted for publication (2004).Google Scholar
  2. 2.
    P. Heidebrecht. Modelling, analysis and optimisation of a molten carbonate fuel cell with direct internal reforming (DIR-MCFC). Dissertation, Otto-von-Guericke-Universität Magdeburg, Magdeburg, 2004.Google Scholar
  3. 3.
    W. Lucht and K. Debrabant. On quasi-linear PDAEs with convection: Applications, indices, numerical solution. Applied Numerical Mathematics, 42:297–314, 2002.MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Rang and K. Chudej. A perturbation index for a singular PDE model of a fuel cell. Report, Technische Universität Clausthal, 2004.Google Scholar
  5. 5.
    K. Sternberg, K. Chudej, and H.J. Pesch. Molten Carbonate Fuel Cell: Simulation and Optimization of a Partial Differential-Algebraic Dynamical System.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • K. Chudej
    • 1
  1. 1.Lehrstuhl für IngenieurmathematikUniversität BayreuthBayreuth

Personalised recommendations