Skip to main content

The MEGAFLOW Project — Numerical Flow Simulation for Aircraft

  • Conference paper
Progress in Industrial Mathematics at ECMI 2004

Part of the book series: Mathematics in Industry ((TECMI,volume 8))

Summary

Some years ago the national CFD project MEGAFLOW was initiated in Germany, which combined many of the CFD development activities from DLR, universities and aircraft industry. Its goal was the development and validation of a dependable and efficient numerical tool for the aerodynamic simulation of complete aircraft which met the requirements of industrial implementations. The MEGAFLOW software system includes the block-structured Navier-Stokes code FLOWer and the unstructured Navier-Stokes code TAU. Both codes have reached a high level of maturity and they are intensively used by DLR and the German aerospace industry in the design process of new aircraft. Recently, the follow-on project MEGADESIGN was set up which focuses on the development and enhancement of efficient numerical methods for shape design and optimization. This paper highlights recent improvements and enhancements of the software. Its capability to predict viscous flows around complex industrial applications for transport aircraft design is demonstrated. First results concerning shape optimization are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1st AIAA CFD Drag Prediction Workshop. http://www.aiaa.org/tc/apa/dragpredworkshop/dpw.html.

    Google Scholar 

  2. 2nd AIAA CFD Drag Prediction Workshop. http://ad-www.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/.

    Google Scholar 

  3. CentaurSoft: http://www.centaursoft.com/.

    Google Scholar 

  4. NETGEN, http://www.hpfem.jku.at/netgen, 2004.

    Google Scholar 

  5. Schütte. A., G. Einarsson, B. Schöning, A. Raichle, W. Mönnich, Th. Alrutz Neumann. J., and J. Heinnecke. Numerical Simulation of Maneuvering Combat Aircraft. In STAB 2004, to appear in Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM). Springer Verlag, 2005.

    Google Scholar 

  6. P. Aumann, H. Barnewitz, H. Schwarten, K. Becker, R. Heinrich, B. Roll, M. Galle, N. Kroll, Th. Gerhold, and M. Schwamborn, and D. Franke. MEGAFLOW: Parallel Complete Aircraft CFD. Parallel Computing, 27:415–440, 2001.

    Article  MATH  Google Scholar 

  7. W. Bartelheimer. An Improved Integral Equation Method for the Design of Transonic Airfoils and Wings. In AIAA 95-1688, 1995.

    Google Scholar 

  8. C. Braun, A. Bouche, and J. Ballmann. Numerical Study of the Inuence of Dynamic Pressure and Deflected Ailerons on the Deformation of a High Speed Wing Model. In Krause. E., W. Jaeger, and M. Resch, editors, High Performance Computing in Science and Engineering 2004. Springer Verlag, 2004.

    Google Scholar 

  9. J. Brezillon and N.R. Gauger. 2D and 3D Aerodynamic Shape Optimization Using Adjoint Approach. Aerosp. Sci. Technol., 8:715–727, 2004.

    Article  MATH  Google Scholar 

  10. O. Brodersen. Drag Prediction of Engine-Airframe Interference Effects Using Unstructured Navier-Stokes Calculations. Journal of Aircraft, 39(6):927–935, 2002.

    Google Scholar 

  11. O. Brodersen, M. Rakowitz, S. Amant, Larrieu. P., D. Destarac, and M. Sutcliffe. Airbus, ONERA and DLR Results from the 2nd AIAA Drag Prediction Workshop. In AIAA 2004-0391, 2004.

    Google Scholar 

  12. O. Brodersen, A. Ronzheimer, R. Ziegler, T. Kunert, J. Wild, and M. Hepperle. Aerodynamic Applications Using Megacads. In M. Cross et al., editor, 6th International Conference on Numerical Grid Generation on Computational Field Simulations, ISGG, pages 793–802, 1998.

    Google Scholar 

  13. O. Brodersen and A. Stürmer. Drag Prediction of Engine-Airframe Interference Effects Using Unstructured Nvier-Stokes Calculations. In AIAA 2001–2414, 2001.

    Google Scholar 

  14. O. Brodersen and J. Wild. DLR-IB 124-2004-18, 2004.

    Google Scholar 

  15. O. Brodersen, J. Wild, S. Melber-Wilkending, and L. Lekemark. In DLR-IB 129-2003-34, DLR Braunschweig, 2003.

    Google Scholar 

  16. R. Dwight. A Comparison of Implicit Algorithms for the Navier-Stokes Equations on Unstructured Grids. In Proceedings of the ICCFD Conference, Toronto, Canada, 2004.

    Google Scholar 

  17. B. Eisfeld. Numerical Simulation of Aerodynamic Problems with a Reynolds Stress Turbulence Model. In STAB 2004, to appear in Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM). Springer Verlag, 2005.

    Google Scholar 

  18. J.K. Fassbender. Improved Robustness for Numerical Simulation of Turbulent Flows around Civil Transport Aircraft at Flight Reynolds Numbers. In DLR-FB 2003-09, 2003.

    Google Scholar 

  19. M. Galle. Ein Verfahren zur numerischen Simulation kompressibler, reibungsbehafteter strömungen auf hybriden netzen. In DLR-FB 99-04, 1999.

    Google Scholar 

  20. N.R. Gauger. Das Adjungiertenverfahren in der aerodynamischen Formoptimierung. In DLR-FB 2003-05, 2003.

    Google Scholar 

  21. R. Heinrich and N. Kalitzin. Numerical Simulation of Three-Dimensional Flows Using the Chimera Technique. Notes on Numerical Fluid Mechanics, 72:15–23, 1999.

    Google Scholar 

  22. A. Jameson, L. Martinelli, and N. Pierce. Optimum Aerodynamic Design Using the Navier-Stokes Equations. Theoret. Comput. Fluid Dynamics, 10:213–237, 1998.

    Article  MATH  Google Scholar 

  23. J.C. Kok and F.J. Brandsma. Turbulence Model Based Vortical Flow Computations for a Sharp Edged Delta Wing in Transonic Flow Using the Full Navier-Stokes Equations. In NLR-CR-2000-342, 2000.

    Google Scholar 

  24. J.C. Kok, H.S. Dol, B. Oskam, and H. van der Ven. Extra-Large Eddy Simulation of Massively Separated Flows. In AIAA-Paper, 2004-0264, 2004.

    Google Scholar 

  25. N. Kroll and J.K. Fassbender (Eds.). Notes on Numerical Fluid Mechanics and Multidisciplinary Design, volume 89, chapter MEGAFLOW-Numerical Flow Simulation for Aircraft Design. Springer, 2005.

    Google Scholar 

  26. N. Kroll, Gauger. N. R., J. Brezillon, K. Becker, and V. Schulz. Ongoing Activities in Shape Optimization within the German Project MEGADESIGN. In ECCOMAS 2004, Jyväskylä, Finland, July 2004.

    Google Scholar 

  27. N. Kroll, R. Radespiel, and C.-C. Rossow. Accurate and Efficient Flow Solvers for 3D-Applications on Structured Meshes. In AGARD R-807, pages 4.1–4.59, 1995.

    Google Scholar 

  28. N. Kroll, C.C. Rossow, K. Becker, and F. Thiele. The MEGAFLOW project. Aerosp. Sci. Technol., 4:223–237, 2000.

    Article  MATH  Google Scholar 

  29. N. Kroll, C.C. Rossow, D. Schwamborn, K. Becker, and G. Heller. MEGAFLOW-A Numerical Flow Simulation Tool for Transport Aircraft Design. ICAS, 1.10.5, 2002.

    Google Scholar 

  30. A. Krumbein. Coupling of the DLR Navier-Stokes Solver FLOWer with an eN-Database Method for Laminar-Turbulent Transition Prediction on Airfoils. Notes on Numerical Fluid Mechanics, 77:92–99, 2002.

    MATH  Google Scholar 

  31. F. Le Chuiton. Chimera simulation of a complete helicopter with rotors as actuator discs. In STAB 2004, to appear in Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM). Springer Verlag, 2005.

    Google Scholar 

  32. F. LeChuiton. Actuator Disc Modeling for Helicopter Rotors. Aerosp. Sci. Technol, 8:285–297, 2004.

    Article  Google Scholar 

  33. D.A. Lovell. Aerodynamic Research to Support a Second Generation Supersonic Transport Aircraft-the EUROSUP Project. In ECCOMAS 1998, 1998.

    Google Scholar 

  34. A. Madrane, A. Raichle, and A. Stürmer. Parallel Implementation of a Dynamic Overset Unstructured Grid Approach. In ECCOMAS 2004, Jyväskylä, Finland, July 2004.

    Google Scholar 

  35. S. Melber. 3D RANS Simulations for High-Lift Transport Aircraft Configurations with Engines. DLR-IB 124-2002/27, 2002.

    Google Scholar 

  36. F.R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, 32:1598–1605, 1994.

    Article  Google Scholar 

  37. K. Pahlke and B. van der Wall. Chimera Simulations of Multibladed Rotors in High-Speed Forward Flight with Weak Fluid-Structure-Coupling. In 29th European Rotorcraft Forum, page 63, Friedrichshafen, Germany, 2003.

    Google Scholar 

  38. M. Rakowitz, M. Sutcliffe, B. Eisfeld, D. Schwamborn, and J. Bleecke, and H. Fassbender. Structured and Unstructured Computations on the DLR-F4 Wing-Body Configuration. In AIAA 2002-0837, 2002.

    Google Scholar 

  39. R. Rudnik. Towards CFD Validation for 3D High Lift Flows-EUROLIFT. In ECCOMAS 2001, Swansea, United Kingdom, 2001.

    Google Scholar 

  40. R. Rudnik, S. Melber, A. Ronzheimer, and O. Brodersen. Three-Dimensional Navier-Stokes Simulations for Transport Aircraft High Lift Configurations. Journal of Aircraft, 38:895–903, 2001.

    Article  Google Scholar 

  41. R. Rudnik, C.C. Rossow, and H. v. Geyr. Numerical Simulation of Engine/Airframe Integration for High-Bypass Engines. Aerosp. Sci. and Technol., 6:31–42, 2002.

    Article  MATH  Google Scholar 

  42. T. Rung, H. Lübcke, M. Franke, L. Xue, F. Thiele, and S. Fu. Assessment of Explicit Algebraic Stress Models in Transonic Flows. In Proceedings of the 4 th Symposium on Engineering Turbulence Modeling and Measurements, pages 659–668, France, 1999.

    Google Scholar 

  43. A. Schütte, G. Einarsson, A. Madrane, B. Schöning, W. Mönnich, and W.-R. Krüger. Numerical Simulation of Maneuvering Aircraft by CFD and Flight Mechanic coupling. In RTO Symposium, Paris, April 2002.

    Google Scholar 

  44. A. Schütte, G. Einarsson, B. Schöning, A. Madrane, W. Mönnich, and W. Krüger. Numerical Simulation of Manoeuvring Aircraft by Aerodynamic and Flight Mechanic Coupling. In RTO AVT Symposium Paris, 2005.

    Google Scholar 

  45. Th. Schwarz. Development of a Wall Treatment for Navier-Stokes Computations Using the Overset Grid Technique. In 26th European Rotorcraft Forum, page 45, 2000.

    Google Scholar 

  46. J. Sidès, K. Pahlke, and M. Costes. Numerical Simulation of Flows around Helicopters at DLR and ONERA. Aerosp. Sci. Technol., 5:35–53, 2001.

    Article  MATH  Google Scholar 

  47. C.G. Speziale, S. Sarkar, and T.B. Gatski. Modeling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. Journal of Fluid Mechanics, 227:245–272, 1991.

    Article  MATH  Google Scholar 

  48. M. Strelets. Detached Eddy Simulation of massively separated ows. In AIAA-Paper 2001-0879, 2001.

    Google Scholar 

  49. Gerhold T., O. Friedrich, Evans J., and M. Galle. Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU Code. In AIAA 97-0167, 1997.

    Google Scholar 

  50. S. Takanashi. Iterative Three-Dimensional Transonic Wing Design Using Integral Equations. Journal of Aircraft, 22(8), 1985.

    Google Scholar 

  51. J.B. Vos, A. W. Rizzi, D. Darracq, and E. H. Hirschel. Navier-Stokes Solvers in European Aircraft Industry. Progress in Aerospace Sciences, 38:601–697, 2002.

    Article  Google Scholar 

  52. S. Wallin and A.V. Johansson. An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows. J. Fluid Mech., 403:89–132, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  53. D.C. Wilcox. Turbulence Modeling for CFD, DCW Industries. CA, La Cañada, 1998.

    Google Scholar 

  54. J. Wild. Validation of Numerical Optimization of High-Lift Multi-Element Airfoils based on Navier-Stokes-Equations. In AIAA 2002-2939, 2002.

    Google Scholar 

  55. R. Wilhelm. An Inverse Design Method for Designing Isolated and Wing-Mounted Engine Nacelles. In AIAA 2002-0104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rossow, CC., Kroll, N., Schwamborn, D. (2006). The MEGAFLOW Project — Numerical Flow Simulation for Aircraft. In: Di Bucchianico, A., Mattheij, R., Peletier, M. (eds) Progress in Industrial Mathematics at ECMI 2004. Mathematics in Industry, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28073-1_1

Download citation

Publish with us

Policies and ethics