Skip to main content

Akzeleration der Antidepressivaresponse und Augmentation mit Pindolol

  • Chapter
Akute und therapieresistente Depressionen
  • 4438 Accesses

Zusammenfassung

Aufgrund steigender Prävalenzen der Major Depression und dem Nichtansprechen antidepressiver Therapien bei einem Teil der Patienten wurden zunehmend Behandlungsstrategien untersucht, die das Ansprechen der klassischen Antidepressiva beschleunigen und/oder verbessern sollen. Dazu gehört u. a. auch Pindolol. Es wurde ursprünglich als Antihypertonikum (partieller β- Blocker) entwickelt; später wurde dann seine partielle Serotonin-(5-HT-)Rezeptoren-blockende Wirkung entdeckt sowie seine Eigenschaft, die Blut- Hirn-Schranke relativ problemlos zu passieren. Eine kürzlich durchgeführte Metaanalyse der bisher publizierten Daten ergab, dass Pindolol bei einer Gabe von 2,5 mg zweimal pro Tag zwar den antidepressiven Wirkungseintritt beschleunigt, jedoch nicht die klinische Wirkung bei bisher therapieresistenten Patienten verbessern konnte. Eine signifikante Verbesserung der antidepressiven Wirkung zeigte sich aber bei Patienten mit der kurzen Variante des 5-HT-Transporter-Promotorgens. Es wird vermutet, dass es bei einer gesteigerten Pindololdosis von etwa 5 mg zweimal pro Tag zu einer höheren Besetzung der 5-HT1A-Autorezeptoren im Gehirn kommt, was dann evtl. zur erwünschten Wirkung führt. Doch liegen zu dieser Dosierung noch keine klinischen Untersuchungen vor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adell A, Artigas F (1991) Differential effects of clomipramine given locally or systemically on extracellular 5-hydroxytryptamine in raphe nuclei and frontal cortex. An in vivo microdialysis study. Naunyn Schmiedebergs Arch Pharmacol 343: 237–244

    Article  PubMed  Google Scholar 

  • Adell A, Celada P, Artigas F (2001) The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. J Neurochem 79: 172–182

    Article  PubMed  Google Scholar 

  • Adell A, Celada P, Abellán MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Rev 39: 154–180

    Article  PubMed  Google Scholar 

  • Amargós-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F (2004) Co-expression and in vivo interactions of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14: 281–299

    Article  PubMed  Google Scholar 

  • Angst J (1992) Epidemiology of depression. Psychopharmacology 106[Suppl]: S71–S74

    PubMed  Google Scholar 

  • Araneda R, Andrade R (1991) 5-Hydroxytryptamine-2 and 5-hydroxytryptamine-1A receptors mediate opposing responses on membrane excitability in rat association cortex. Neuroscience 40: 399–412

    Article  PubMed  Google Scholar 

  • Artigas F (1993) 5-HT and antidepressants: new views from microdialysis studies. Trends Pharmacol Sci 14: 262

    Article  PubMed  Google Scholar 

  • Artigas F, Pérez V, Alvarez E (1994). Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatry 51: 248–251

    PubMed  Google Scholar 

  • Artigas F, Romero L, de Montigny C, Blier P (1996) Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 19: 378–383

    Article  PubMed  Google Scholar 

  • Artigas F, Celada P, Laruelle M, Adell (2001) How does pindolol improve antidepressant action. Trends Pharmacol Sci 22: 224–228

    PubMed  Google Scholar 

  • Ashby CR, Edwards E, Wang RY (1994) Electrophysiological evidence for functional interaction between 5-HT1A and 5-HT2A receptors in the rat medial prefrontal cortex: an iontophoretic study. Synapse 17: 173–181

    Article  PubMed  Google Scholar 

  • Ballesteros J, Collado LF (2004) Effectiveness of pindolol plus serotonin uptake inhibitors in depression: a meta-analysis of early and late outcomes from randomised controlled trials. J Affect Disorders 79: 137–147

    PubMed  Google Scholar 

  • Barnes NN, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152

    Article  PubMed  Google Scholar 

  • Beaudet A, Descarries L (1978) The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals. Neuroscience 3: 851–860

    Article  PubMed  Google Scholar 

  • Bel N, Artigas F (1992) Fluvoxamine preferentially increases extracellular 5-hydroxytryptamine in the raphe nuclei: an in vivo microdialysis study. Eur J Pharmacol 229: 101–103

    Article  PubMed  Google Scholar 

  • Bel N, Artigas F (1993) Chronic treatment with fluvoxamine increases extracellular serotonin in frontal cortex but not in raphé nuclei. Synapse 15: 243–245

    PubMed  Google Scholar 

  • Berman RM, Anand A, Cappiello A, Miller HL, Hu XS, Oren DA, Charney DS (1999) The use of pindolol with fluoxetine in the treatment of major depression: final results from a double-blind, placebo-controlled trial. Biol Psychiatry 45: 1170–1177

    Article  PubMed  Google Scholar 

  • Blier P, De Montigny C (1987) Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1: 470–480

    Article  PubMed  Google Scholar 

  • Blier P, De Montigny C (1994) Current advances in the treatment of depression. Trends Pharmacol Sci 15: 220–226

    PubMed  Google Scholar 

  • Blier P, Bergeron R (1995) Effectiveness of pindolol with selected antidepressant drugs in the treatment of major depression. J Clin Psychopharmacol 15: 217–222

    Article  PubMed  Google Scholar 

  • Bordet R, Thomas P, Dupuis B (1998) Effect of pindolol on onset of action of paroxetine in the treatment of major depression: intermediate analysis of a double-blind, placebo-controlled trial. Reseau de Recherche et d'Expérimentation Psychopharmacologique. Am J Psychiatry 155: 1346–1351

    PubMed  Google Scholar 

  • Bortolozzi A, Amargós-Bosch M, Toth M, Artigas F, Adell A (2004) In vivo efflux of serotonin in the dorsal raphe nucleus of 5-HT1A receptor knockout mice. J Neurochem 88: 1373–1379

    PubMed  Google Scholar 

  • Casanovas JM, Lésourd M, Artigas F (1997) The effect of the selective 5-HT1A agonists alnespirone (S-20499) and 8-OH-DPAT on extracellular 5-hydroxytryptamine in different regions of rat brain. Br J Pharmacol 122: 733–741

    Article  PubMed  Google Scholar 

  • Casanovas JM, Berton O, Celada P, Artigas F (2000) In vivo actions of the selective 5-HT1A receptor agonist BAY x 3702 on serotonergic cell firing and release. Naunyn Schmiedebergs Arch Pharmacol 362: 248–254

    Article  PubMed  Google Scholar 

  • Castro ME, Harrison PJ, Pazos A, Sharp T (2000) Affinity of (±)-pindolol, (−)-penbutolol, and (−)-tertatolol for pre-and postsynaptic serotonin 5-HT1A receptors in human and rat brain. J Neurochem 75: 755–762

    PubMed  Google Scholar 

  • Celada P, Artigas F (1993) Monoamine oxidase inhibitors increase preferentially extracellular 5-hydroxytryptamine in the midbrain raphe nuclei. A brain microdialysis study in the awake rat. Naunyn Schmiedebergs Arch Pharmacol 347: 583–590

    Article  PubMed  Google Scholar 

  • Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: involvement of serotonin-1A, GABAA, and glutamate receptors. J Neurosci 21: 9917–9929

    PubMed  Google Scholar 

  • Cortés R, Soriano E, Pazos A, Probst A, Palacios JM (1988) Autoradiography of antidepresssant binding sites in the human brain: Localization using [3H]imipramine and [3H]paroxetine. Neuroscience 27: 473–496

    Article  PubMed  Google Scholar 

  • Czyrak A, Czepiel K, Mackowiak M, Chocyk A, Wedzony K (2003) Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res 989: 42–51

    Article  PubMed  Google Scholar 

  • De Felipe J, Arellano JI, Gomez A, Azmitia EC, Muñoz A (2001) Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J Comp Neurol 433: 148–155

    Article  PubMed  Google Scholar 

  • Haddjeri N, Blier P, De Montigny C (1998) Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J Neurosci 18: 10150–10156

    PubMed  Google Scholar 

  • Hervás I, Queiroz CMT, Adell A, Artigas F (2000) Role of uptake inhibition and autoreceptor activation in the control of 5-HT release in the frontal cortex and dorsal hippocampus of the rat. Br J Pharmacol 130: 160–166

    Article  PubMed  Google Scholar 

  • Invernizzi RW, Parini S, Sacchetti G, Frascasso C, Caccia S, Annoni K, Samanin R (2001) Chronic treatment with reboxetine by osmotic pumps facilitates its effect on extracellular noradrenaline and may desensitize β2-adrenoceptors in the prefrontal cortex. Br J Pharmacol 132: 183–188

    Article  PubMed  Google Scholar 

  • Isaac MT, Isaac MB, Gallo F, Tournoux A (2003) Milnacipran and pindolol: a randomized trial of reduction of antidepressant latency. Hum Psychopharmacol 18: 595–601

    Article  PubMed  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 165–229

    PubMed  Google Scholar 

  • Knobelman DA, Hen R, Lucki I (2001) Genetic regulation of extracellular serotonin by 5-hydroxytryptamine1A and 5-hydroxytryptamine1B autoreceptors in different brain regions of the mouse. J Pharmacol Exp Ther 298: 1083–1091

    PubMed  Google Scholar 

  • Lépine JP, Gastpar M, Mendlewicz J, Tylee A (1997) Depression in the community: the first pan-European study DEPRES (Depression Research in European Society). Int Clin Psychopharmacol 12: 19–29

    Google Scholar 

  • Lenox RH, McNamara RK, Papke RL, Manji HK (1998) Neurobiology of lithium: an update. J Clin Psychiatry 59[Suppl 6]: 37–47

    Google Scholar 

  • Lesch KP, Poten B, Sohnle K, Schulte HM (1990) Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans. Eur J Clin Pharmacol 39: 17–19

    Article  PubMed  Google Scholar 

  • Maes M, Libbrecht I, van Hunsel F, Campens D, Meltzer HY (1999) Pindolol and mianserin augment the antidepressant activity of fluoxetine in hospitalized major depressed patients, including those with treatment resistance. J Clin Psychopharmacol 19: 177–182

    Article  PubMed  Google Scholar 

  • Maes M, Vandoolaeghe E, Desnyder R (1996) Efficacy of treatment with trazodone in combination with pindolol or fluoxetine in major depression. J Affect Disord 41: 201–210

    Article  PubMed  Google Scholar 

  • Martinez D, Hwang D, Mawlawi O et al. (2001) Differential occupancy of somatodendritic and postsynaptic 5HT1A receptors by pindolol: a dose-occupancy study with [11C]WAY 100635 and positron emission tomography in humans. Neuropsychopharmacol 24: 209–229

    Article  Google Scholar 

  • Mateo Y, Fernandez-Pastor B, Meana JJ (2001) Acute and chronic effects of desipramine and clorgyline on ß2-adrenoceptors regulating noradrenergic transmission in the rat brain: a dual-probe microdialysis study. Br J Pharmacol 133: 1362–1370

    Article  PubMed  Google Scholar 

  • Middlemiss DN (1986) Blockade of the central 5-HT autoreceptor by beta-adrenoceptor antagonists. Eur J Pharmacol 120: 51–56

    PubMed  Google Scholar 

  • Middlemiss DN, Neil J, Tricklebank MD. (1985) Subtypes of the 5-HT receptor involved in hypothermia and forepaw treading induced by 8-OH-DPAT. Br J Pharmacol 134: 382–389

    Google Scholar 

  • Míguez JM, Paz-Valiñas L, Míguez I, Aldegunde M (2002) Somatodendritic action of pindolol to attenuate the paroxetine-induced decrease in serotonin release from the rat ventral hippocampus: a microdialysis study. Naunyn Schmiedebergs Arch Pharmacol 365: 378–387

    Article  PubMed  Google Scholar 

  • Moreno FA, Gelenberg AJ, Bachar K, Delgado PL (1997) Pindolol augmentation of treatment-resistant depressed patients. J Clin Psychiatry 58: 437–439.

    PubMed  Google Scholar 

  • Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349: 1498–1504

    Article  PubMed  Google Scholar 

  • Newman-Tancredi A, Chaput C, Gavaudan S, Verriele L, Millan MJ (1998) Agonist and antagonist actions of pindolol at recombinant, human serotonin1A (5-HT1A) receptors. Neuropsychopharmacology 18: 395–398

    Article  PubMed  Google Scholar 

  • Oleskevich S, Descarries L (1990) Quantified distribution of the serotonin innervation in adult rat hippocampus. Neuroscience 34: 19–33

    Article  PubMed  Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA 95: 10734–10739

    Article  PubMed  Google Scholar 

  • Pérez V, Puigdemont D, Gilaberte I, Alvarez E, Artigas F (2001) Augmentation of fluoxetine's antidepressant action by pindolol: analysis of clinical, pharmacokinetic, and methodologic factors. J Clin Psychopharmacol 21: 36–45

    Article  PubMed  Google Scholar 

  • Pérez V, Gilaberte I, Faries D, Alvarez E, Artigas F (1997) Randomised, double-blind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment. Lancet 349: 1594–1597

    Article  PubMed  Google Scholar 

  • Pérez V, Soler J, Puigdemont D, Alvarez E, Grup de recerca en trastorns afectius, Artigas F (1999). A double-blind randomized, placebo-controlled trial of pindolol augmentation in depressive patients resistant to serotonin reuptake inhibitors. Arch Gen Psychiatry 56: 375–379

    Article  PubMed  Google Scholar 

  • Perry EB, Berman RM, Sanacora G, Anand A, Lynch-Colonese K, Charney DS (2004) Pindolol Augmentation in depressed patients resistant to selective serotonin reuptake inhibitors: a double-blind, randomized, controlled trial. J Clin Psychiatry 65: 238–243

    PubMed  Google Scholar 

  • Rabiner EA, Bhagwagar Z, Gunn RN, Sargent PA, Bench CJ, Cowen PJ, Grasby PM (2001) Pindolol augmentation of selective serotonin reuptake inhibitors: PET evidence that the dose used in clinical trials is too low. Am J Psychiatry 158: 2080–2082

    Article  Google Scholar 

  • Rabiner EA, Wilkins MR, Turkheimer F, Gunn RN, de Haes JU, de Vries M, Grasby PM (2002) 5-Hydroxytryptamine1A receptor occupancy by novel full antagonist 2-[4-[4-(7-chloro-2,3-dihydro-1,4-benzdioxyn-5-yl)-1-piperazinyl]butyl]-1, 2-benzisothiazol-3-(2H)-one-1,1-dioxide: a[11C][O-methyl-3H]-N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-py ridinyl)cyclohexanecarbox amide trihydrochloride (WAY-100635) positron emission tomography study in humans. J Pharmacol Exp Ther 301: 1144–1150

    Article  PubMed  Google Scholar 

  • Räsanen P, Hakko H, Tiihonen J (1999) Mitchell B. Balter Award 1998. Pindolol and major affective disorders: a three-year follow-up study of 30,485 patients. J Clin Psychopharmacol 19: 297–302

    Article  PubMed  Google Scholar 

  • Rasmussen K, McCreary AC, Shanks EA (2004) Attenuation of the effects of fluoxetine on serotonergic neuronal activity by pindolol in rats. Neurosci Lett 355: 1–4

    Article  PubMed  Google Scholar 

  • Raurich A, Mengod G, Artigas F, Cortés R (1999) Displacement of the binding of 5-HT1A receptor ligands to pre-and postsynaptic receptors by (−)pindolol. A comparative study in rodent, primate and human brain. Synapse 34: 68–76

    Article  PubMed  Google Scholar 

  • Rollema H, Clarke T, Sprouse JS, Schulz DW (1996) Combined administration of a 5-hydroxytryptamine (5-HT1D) antagonist and a 5-HT reuptake inhibitor synergistically increases 5-HT release in guinea pig hypothalamus in vivo. J Neurochem 67: 2204–2207

    PubMed  Google Scholar 

  • Romero L, Bel N, Artigas F, de Montigny C, Blier P (1996) Effect of pindolol on the function of pre-and postsynaptic 5-HT1A receptors: in vivo microdialysis and electrophysiological studies in the rat brain. Neuropsychopharmacology 15: 349–360

    Article  PubMed  Google Scholar 

  • Saura J, Kettler R, Da Prada M, Richards JG (1992) Quantitative enzyme radioautography with 3H-Ro 41—1049 and 3HRo 19—6327 in vitro: localization and abundance of MAOA and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12: 1977–1999

    PubMed  Google Scholar 

  • Shiah IS, Yatham LN, Srisurapanont M, Lam RW, Tam EM, Zis AP (2000) Does the addition of pindolol accelerate the response to electroconvulsive therapy in patients with major depression? A double-blind, placebo-controlled pilot study. J Clin Psychopharmacol 20: 373–378

    Article  PubMed  Google Scholar 

  • Smeraldi E, Benedetti F, Barbini B, Campori E, Colombo C (1999) Sustained antidepressant effect of sleep deprivation combined with pindolol in bipolar depression. A placebo-controlled trial. Neuropsychopharmacology 20: 380–385

    Article  PubMed  Google Scholar 

  • Sokolski KN, Conney JC, Brown BJ, DeMet EM (2004) Oncedaily high-dose pindolol for SSRI-refractory depression. Psychiat Res 125: 81–86

    Article  Google Scholar 

  • Sprouse JS, Aghajanian GK (1986) (−)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur J Pharmacol 128: 295–298

    Article  PubMed  Google Scholar 

  • Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9

    Article  PubMed  Google Scholar 

  • Svensson TH, Bunney BS, Aghajanian GK (1975) Inhibition of both noradrenergic and serotonergic neurons in brain by the alpha-adrenergic agonist clonidine. Brain Res 92: 291–306

    Article  PubMed  Google Scholar 

  • Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69: 1749–1757

    PubMed  Google Scholar 

  • Tollefson GD, Holman SL (1994) How long to onset of antidepressant action? Int Clin Psychopharmacol 9: 245–250

    Google Scholar 

  • Tomé MB, Isaac MT, Harte R, Holland C (1997) Paroxetine and pindolol: a randomized trial of serotonergic autoreceptor blockade in the reduction of antidepressant latency. Int Clin Psychopharmacol 12: 81–89

    PubMed  Google Scholar 

  • Zanardi R, Artigas F, Franchini L, Sforzini L, Gasperini M, Smeraldi E, Pérez J (1997) How long should pindolol be associated with paroxetine to improve the antidepressant response? J Clin Psychopharmacol 17: 446–450

    Article  PubMed  Google Scholar 

  • Zanardi R, Franchini L, Gasperini M, Lucca A, Smeraldi E, Pérez J (1998) Faster onset of action of fluvoxamine in combination with pindolol in the treatment of delusional depression: a controlled study. J Clin Psychopharmacol 18: 441–446

    Article  PubMed  Google Scholar 

  • Zanardi R, Serretti A, Rossini D, Franchini L, Cusin C, Lattuada E, Dotoli D, Smeraldi E (2001) Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol Psychiatry 50: 323–330

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Artigas, F., Adell, A., Celada, P. (2005). Akzeleration der Antidepressivaresponse und Augmentation mit Pindolol. In: Bauer, M., Berghöfer, A., Adli, M. (eds) Akute und therapieresistente Depressionen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28049-9_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-28049-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40617-4

  • Online ISBN: 978-3-540-28049-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics