Skip to main content

Entry of Protein Toxins into Mammalian Cells by Crossing the Endoplasmic Reticulum Membrane: Co-opting Basic Mechanisms of Endoplasmic Reticulum-Associated Degradation

  • Chapter
Dislocation and Degradation of Proteins from the Endoplasmic Reticulum

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 300))

Abstract

The catalytic polypeptides of certain bacterial and plant protein toxins reach their substrates in the cytosol of mammalian cells by retro-translocation from the endoplasmic reticulum (ER). Emerging evidence indicates that these proteins subvert the ER-associated protein degradation (ERAD) pathway that normally removes misfolded or unassembled proteins from the ER, to achieve retrotranslocation. Upon entering the ER lumen, the toxins are unfolded to be perceived as ERAD substrates. Toxins that retro-translocate from the ER have an unusually low lysine content to avoid ubiquitin-mediated proteasomal degradation. This allows the exported toxins to refold into the proteasome-resistant, biologically active conformation, and leads to cellular intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argent RH, Parrott AM, Day PJ, Roberts LM, Stockley PG, Lord JM, Radford SE (2000) Ribosome-mediated folding of partially unfolded ricin A-chain. J Biol Chem 275:9263–9269

    Article  CAS  PubMed  Google Scholar 

  • Balint G (1974) Ricin: the toxic protein of castor oil seeds. Toxicology 2:77–102

    CAS  PubMed  Google Scholar 

  • Bays N, Hampton R (2002) Cdc48-Ufd1-Npl4: stuck in the middle with Ub. Curr Biol 12:R366–R371

    Article  CAS  PubMed  Google Scholar 

  • Bellisola G, Fracasso G, Ippoliti R, Menestrina G, Rosen A, Solda S, Udali S, Tomazzolli R, Tridente G, Colombatti M (2004) Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem Pharmacol 67:1721–1731

    Article  CAS  PubMed  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1991) Alpha-toxin of Staphylococcus aureus. Microbiol Rev 55:733–751

    CAS  PubMed  Google Scholar 

  • Buckley J, Halasa L, Lund K, MacIntyre S (1981) Purification and some properties of the hemolytic toxin aerolysin. Can J Biochem 59:430–436

    CAS  PubMed  Google Scholar 

  • Butterworth AG, Lord JM (1983) Ricin and Ricinus communis agglutinin subunits are all derived from a single-size polypeptide precursor. Eur J Biochem 137:57–65

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary V, Jinno Y, FitzGerald D, Pastan I (1990) Pseudomonas exotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc Natl Acad Sci U S A 87:308–312

    CAS  PubMed  Google Scholar 

  • Chen A, Abu Jarour RJ, Draper RK (2003) Evidence that the transport of ricin to the cytoplasm is independent of both Rab6A and COPI J Cell Sci 116:3503–3510

    CAS  PubMed  Google Scholar 

  • Clemons W, Menetret JF, Akey CW, Rapoport T (2004) Structural insight into the protein translocation channel. Curr Opin Struct Biol 14:390–396

    CAS  PubMed  Google Scholar 

  • Cosson P, Letourneur F (1994) Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263:1629–1631

    CAS  PubMed  Google Scholar 

  • Day PJ, Owens SR, Wesche J, Olsnes S, Roberts LM, Lord JM (2001) An interaction between ricin and calreticulin that may have implications for toxin trafficking. J Biol Chem 276:7202–7208

    Article  CAS  PubMed  Google Scholar 

  • Day PJ, Pinheiro TJ, Roberts LM, Lord JM (2002) Binding of ricin A-chain to negatively charged phospholipid vesicles leads to protein structural changes and destabilizes the lipid bilayer. Biochemistry 41:2836–2843

    Article  CAS  PubMed  Google Scholar 

  • De S (1959) Enterotoxicity of bacteria-free culture filtrate of Vibrio cholerae. Nature 183:1533–1534

    CAS  PubMed  Google Scholar 

  • Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM (2002) The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405–3413

    Article  CAS  PubMed  Google Scholar 

  • Di Cola A, Frigerio L, Lord JM, Ceriotti A, Roberts LM (2001) Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells. Proc Natl Acad Sci U S A 98:14726–14731

    PubMed  Google Scholar 

  • Dutta N, Panse M, Kulkarni D (1959) Role of cholera toxin in experimental cholera. J Bacteriol 78:594–595

    CAS  PubMed  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem 262:5908–5912

    CAS  PubMed  Google Scholar 

  • Endo Y, Tsurugi K, Yutsudo T, Takeda Y, Ogasawara T, Igarashi K (1988) Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNAN-glycosidase activity of the toxins. Eur J Biochem 171:25–50

    Article  Google Scholar 

  • Falguieres T, Mallard F, Baron C, Hanau D, Lingwood C, Goud B, Salamero J, Johannes L (2001) Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol Biol Cell 12:2453–2468

    CAS  PubMed  Google Scholar 

  • Feng Y, Jadhav A, Rodighiero C, Fujinaga Y, Kirchhausen T, Lencer W (2004) Retrograde transport of cholera toxin from the plasma membrane to the endoplasmic reticulum requires the trans-Golgi network but not the Golgi apparatus in Exo2-treated cells. EMBO Rep 5:596–601

    Article  CAS  PubMed  Google Scholar 

  • Frigerio L, Jolliffe NA, Di Cola A, Felipe DH, Paris N, Neuhaus JM, Lord JM, Ceriotti A, Roberts LM (2001) The internal propeptide of the ricin precursor carries a sequence-specific determinant for vacuolar sorting. Plant Physiol 126:167–175

    Article  CAS  PubMed  Google Scholar 

  • Frigerio L, Vitale A, Lord JM, Ceriotti A, Roberts LM (1998) Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. J Biol Chem 273:14194–14199

    Article  CAS  PubMed  Google Scholar 

  • Fujinaga Y, Wolf AA, Rodighiero C, Wheeler H, Tsai B, Allen L, Jobling MG, Rapoport T, Holmes RK, Lencer WI (2003) Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulum. Mol Biol Cell 14:4783–4793

    Article  CAS  PubMed  Google Scholar 

  • Garred O, van Deurs B, Sandvig K (1995) Furin-induced cleavage and activation of Shiga toxin. J Biol Chem 270:10817–10821

    CAS  PubMed  Google Scholar 

  • Gordon V, Leppla S (1994) Protoelytic activation of bacterial toxins: role of bacterial and host cell proteases. Infect Immun 62:333–340

    CAS  PubMed  Google Scholar 

  • Harley SM, Beevers H (1982) Ricin inhibition of in vivo protein synthesis by plant ribosomes. Proc Natl Acad Sci U S A 79:5935–5938

    CAS  Google Scholar 

  • Harley SM, Lord JM (1985) In vitro endoproteolytic cleavage of castor bean lectin precursors. Plant Sci 41:111–116

    Article  CAS  Google Scholar 

  • Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36:11051–11054

    Article  CAS  PubMed  Google Scholar 

  • Hirst TR, Holmgren J (1987) Transient entry of enterotoxin subunits into the periplasm occurs during their secretion from Vibrio cholerae. J Bacteriol 169:1037–1045

    CAS  PubMed  Google Scholar 

  • Holmgren J, Lonnroth I, Mansson J, Svennerholm L (1975) Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc Natl Acad Sci U S A 72:2520–2524

    CAS  PubMed  Google Scholar 

  • Iglewski B, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci U S A 72:2284–2288

    CAS  PubMed  Google Scholar 

  • Jackson ME, Simpson JC, Girod A, Pepperkok R, Roberts LM, Lord JM (1999) The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J Cell Sci 112:467–475

    CAS  PubMed  Google Scholar 

  • Johannes L, Goud B (1998) Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol 8:158–162

    Article  CAS  PubMed  Google Scholar 

  • Kaper J, Morris J, Levine M (1995) Cholera. Clin Microbiol Rev 8:48–86

    CAS  PubMed  Google Scholar 

  • Koopmann J O, Albring J, Huter E, Bulbuc N, Spee P, Neefjes J, Hammerling GJ, Momburg F (2000) Export of antigenic peptides from the endoplasmic reticulum intersects with retrograde protein translocation through the Sec61p channel. Immunity 13:117–127

    Article  CAS  PubMed  Google Scholar 

  • Kounnas M, Morris R, Thompson M, FitzGerald D, Strickland D, Saelinger C (1992) The alpha2-macroglobulin receptor/low density lipoprotein-related protein binds and internalizes Pseudomonas exotoxin A. J Biol Chem 267:12420–12423

    CAS  PubMed  Google Scholar 

  • Kreitman R, Pastan I (1995) Importance of the glutamate residue of the KDEL in increasing the cytotoxicity of Pseudomonas exotoxin derivatives and for increased binding to the KDEL receptor. Biochem J 307:29–37

    CAS  PubMed  Google Scholar 

  • Lamb FI, Roberts LM, Lord JM (1985) Nucleotide sequence of cloned cDNA coding for preproricin. Eur J Biochem 148:265–270

    Article  CAS  PubMed  Google Scholar 

  • Lencer WI, Constable C, Moe S, Jobling MG, Webb HM, Ruston S, Madara JL, Hirst TR, Holmes RK (1995) Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J Cell Biol 131:951–962

    Article  CAS  PubMed  Google Scholar 

  • Lencer WI, Constable C, Moe S, Rufo PA, Wolf A, Jobling MG, Ruston SP, Madara JL, Holmes RK, Hirst TR (1997) Proteolytic activation of cholera toxin and Escherichia coli labile toxin by entry into host epithelial cells. Signal transduction by a protease-resistant toxin variant. J Biol Chem 272:15562–15568

    Article  CAS  PubMed  Google Scholar 

  • Lencer WI, Tsai B (2003) The intracellular voyage of cholera toxin: going retro. Trends Biochem Sci 28:639–645

    Article  CAS  PubMed  Google Scholar 

  • Letourner F, Gaynor E, Hennecke S, Demolliere C, Duden R, Emr S, Riezman H, Cosson P (1994) Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79:1199–1207

    Google Scholar 

  • Lilley BN, Ploegh HL (2004) Amembrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–840

    Article  CAS  PubMed  Google Scholar 

  • Lindberg A, Brown J, Stromberg N, Westling-Ryd M, Schultz J, Karlsson K (1987) Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785

    CAS  PubMed  Google Scholar 

  • Llorente A, Lauvrak SU, Van Deurs B, Sandvig K (2003) Induction of direct endosome to endoplasmic reticulum transport in Chinese Hamster Ovary (CHO) cells (LdlF) with a temperature-sensitive defect in epsilon-coatomer protein (epsilon-COP). J Biol Chem 278:35850–35855

    Article  CAS  PubMed  Google Scholar 

  • Lord JM (1985a) Precursors of ricin and Ricinus communis agglutinin. Glycosylation and processing during synthesis and intracellular transport. Eur J Biochem 146:411–416

    CAS  PubMed  Google Scholar 

  • Lord JM (1985b) Synthesis and intracellular transport of lectin and storage protein precursors in endosperm from castor bean. Eur J Biochem 146:403–409

    CAS  PubMed  Google Scholar 

  • Lord JM, Roberts LM (1998) Toxin entry: retrograde transport through the secretory pathway. J Cell Biol 140:733–736

    CAS  PubMed  Google Scholar 

  • Lumb RA, Bulleid NJ (2002) Is protein disulfide isomerase a redox-dependent molecular chaperone? EMBO J 21:6763–6770

    Article  CAS  PubMed  Google Scholar 

  • McKee ML, FitzGerald DJ (1999) Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story. Biochemistry 38:16507–16513

    Article  CAS  PubMed  Google Scholar 

  • Mekalanos J, Swartz D, Pearson G, Harford N, Groyne F, de Wilde M (1983) Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306:551–557

    Article  CAS  PubMed  Google Scholar 

  • Merritt E, Hol W (1995) AB5 toxins. Curr Opin Struct Biol 5:165–171

    Article  CAS  PubMed  Google Scholar 

  • Miesenbock G, Rothman J (1995) The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J Cell Biol 129:309–319

    Article  CAS  PubMed  Google Scholar 

  • Minton N (1995) Molecular genetics of clostridial neurotoxins. Curr Top Microbiol Immunol 195:161–194

    CAS  PubMed  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    Article  CAS  PubMed  Google Scholar 

  • Moss J, Vaughan M (1977) Mechanism of action of choleragen: evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457

    CAS  PubMed  Google Scholar 

  • O’Brien A, Holmes R (1987) Shiga and the Shiga-like toxins. Microbiol Rev 51:206–220

    Google Scholar 

  • Olsnes S, Pihl A (1982) Toxic lectins and related proteins. In: Cohen P, van Heyningen S (eds) Molecular action of toxins and viruses. Elsevier, Amsterdam, pp 51–105

    Google Scholar 

  • Orlandi PA (1997) Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J Biol Chem 272:4591–4599

    CAS  PubMed  Google Scholar 

  • Pappenheimer AM Jr (1977) Diphtheria toxin. Annu Rev Biochem 46:29–94

    Article  Google Scholar 

  • Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3:1222–1227

    Article  CAS  PubMed  Google Scholar 

  • Sandvig K, Spilsberg B, Lauvrak SU, Torgersen ML, Iversen TG, van Deurs B (2004) Pathways followed by protein toxins into cells. Int J Med Microbiol 293:483–490

    Article  CAS  PubMed  Google Scholar 

  • Sandvig K, van Deurs B (2002) Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett 529:29–53

    Article  Google Scholar 

  • Schmitz A, Herrgen H, Winkeler A, Herzog V (2000) Cholera toxin is exported from microsomes by the Sec61p complex. J Cell Biol 148:1203–1212

    Article  CAS  PubMed  Google Scholar 

  • Seetharam S, Chaudhary VK, FitzGerald D, Pastan I (1991) Increased cytotoxic activity of Pseudomonas exotoxin and two chimeric toxins ending in KDEL. J Biol Chem 266:17376–17381

    CAS  PubMed  Google Scholar 

  • Sekura R, Moss J, Vaughan M (1985) Pertussis toxin. Academic Press, Orlando

    Google Scholar 

  • Sixma T, Kalk K, van Zanten B, Dauter Z, Kingma J, Witholt B, Hol W (1993) Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230:890–918

    Article  CAS  PubMed  Google Scholar 

  • Sixma T, Pronk S, Kalk K, Wartna E, van Zanten B, Witholt B, Hol W (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E coli. Nature 351:371–377

    Article  CAS  PubMed  Google Scholar 

  • Smith DC, Lord JM, Roberts LM, Johannes L (2004) Glycosphingolipids as toxin receptors. Semin Cell Dev Biol 15:497–408

    Article  Google Scholar 

  • Spangler B (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 56:622–647

    CAS  PubMed  Google Scholar 

  • Spooner RA, Watson PD, Marsden CJ, Smith DC, Moore KA, Cook J P, Lord JM, Roberts LM (2004) Protein disulphide isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem J 383:285–293

    CAS  PubMed  Google Scholar 

  • Teter K, Holmes RK (2002) Inhibition of endoplasmic reticulum-associated degradation in CHO cells resistant to cholera toxin, Pseudomonas aeruginosa exotoxin A, and ricin. Infect Immun 70:6172–6179

    CAS  PubMed  Google Scholar 

  • Teter K, Jobling MG, Holmes RK (2003) Aclass of mutant CHO cells resistant to cholera toxin rapidly degrades the catalytic polypeptide of cholera toxin and exhibits increased endoplasmic reticulum-associated degradation. Traffic 4:232–242

    CAS  PubMed  Google Scholar 

  • Tsai B, Rapoport TA (2002) Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. J Cell Biol 159:207–216

    Article  CAS  PubMed  Google Scholar 

  • Tsai B, Rodighiero C, Lencer WI, Rapoport TA (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937–948

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg B, Clemons WM Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport T (2004) X-ray structure of a protein-conducting channel. Nature 427:26–44

    Article  Google Scholar 

  • Wesche J, Rapak A, Olsnes S (1999) Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J Biol Chem 274:34443–34449

    CAS  PubMed  Google Scholar 

  • Winkeler A, Godderz D, Herzog V, Schmitz A (2003) BiP-dependent export of cholera toxin from endoplasmic reticulum-derived microsomes. FEBS Lett 554:439–442

    Article  CAS  PubMed  Google Scholar 

  • Wright HT, Robertus JD (1987) The intersubunit disulfide bridge of ricin is essential for cytotoxicity. Arch Biochem Biophys 256:280–284

    CAS  PubMed  Google Scholar 

  • Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lord, J.M., Roberts, L.M., Lencer, W.I. (2006). Entry of Protein Toxins into Mammalian Cells by Crossing the Endoplasmic Reticulum Membrane: Co-opting Basic Mechanisms of Endoplasmic Reticulum-Associated Degradation. In: Wiertz, E., Kikkert, M. (eds) Dislocation and Degradation of Proteins from the Endoplasmic Reticulum. Current Topics in Microbiology and Immunology, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28007-3_7

Download citation

Publish with us

Policies and ethics