Skip to main content

The metastable defect in boron-doped Czochralski silicon

  • Chapter
Lifetime Spectroscopy

Part of the book series: Springer Series in Material Science ((SSMATERIALS,volume 85))

  • 1494 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.D. Maycock, PV News (2002).

    Google Scholar 

  2. J. Knobloch, S.W. Glunz, D. Biro, W. Warta, et al., Solar cells with efficiencies above 21 % processed from Czochralski-grown silicon, Proc. 25th IEEE PVSC (Washington DC, USA, 1996), pp. 405–8.

    Google Scholar 

  3. H. Fischer and W. Pschunder, Investigation of photon and thermal induced changes in silicon solar cells, Proc. 10th IEEE PVSC (Palo Alto, California, USA, 1973), pp. 404–11.

    Google Scholar 

  4. T. Yoshida and Y. Kitagawara, Bulk lifetime decreasing phenomena induced by light-illumination in high-purity p-type Cz-Si crystals, Proc. 4th International Symp. on High Purity Silicon IV (San Antonio, TX, USA, 1996), pp. 450–4.

    Google Scholar 

  5. J. Schmidt, A.G. Aberle, and R. Hezel, Investigation of carrier lifetime instabilities in Cz-grown silicon, Proc. 26th IEEE PVSC (Anaheim, California, USA, 1997), pp. 13–18.

    Google Scholar 

  6. S.W. Glunz, S. Rein, W. Warta, J. Knobloch, et al., On the degradation of Cz-silicon solar cells, Proc. 2nd WCPEC (Vienna, Austria, 1998), pp. 1343–6.

    Google Scholar 

  7. V.G. Weizer, H.W. Brandhorst, J.D. Broder, R.E. Hart, et al., Photon-degradation effects in terrestrial silicon solar cells, J. Appl. Phys. 50(6), 4443–9 (1979).

    Article  ADS  Google Scholar 

  8. J. Schmidt and R. Hezel, Light-induced degradation in Cz silicon solar cells: Fundamental understanding and strategies for its avoidance, Proc. 12th Workshop on crystalline silicon solar cell materials and processes (Colorado, 2002), pp. 64–71.

    Google Scholar 

  9. M.A. Green, Solar cells: Operating principles, technology and system applications (UNSW, Kensington, 1986).

    Google Scholar 

  10. T. Saitoh, X. Wang, H. Hashigami, T. Abe, et al., Light degradation and control of low-resistivity Cz-Si solar cells — An international joint research, Proc. 11th PVSEC (Sapporo, Japan, 1999), pp. 553–6.

    Google Scholar 

  11. S.W. Glunz, S. Rein, W. Warta, J. Knobloch, et al., Comparison of lifetime degradation in boron and gallium doped p-type Cz-Si, Proc. International Workshop on light degradation of carrier lifetimes in Cz-Si solar cells (within 11th PVSEC) (Sapporo, Japan, 1999).

    Google Scholar 

  12. S. Rein, Untersuchung der Degradation der Ladungsträgerlebensdauer in Cz-Silizium, Diplomarbeit, Albert-Ludwigs-Universität Freiburg (1998).

    Google Scholar 

  13. J. Schmidt, K. Bothe, and R. Hezel, Formation and annihilation of the metastable defect in boron-doped Czochralski silicon, Proc. 29th IEEE PVSC (New Orleans, Louisiana, USA, 2002), pp. 178–81.

    Google Scholar 

  14. S. Rein, J. Knobloch, and S.W. Glunz, Analysis of the high-temperature improvement of Cz-silicon, Proc. 16th EC PVSEC (Glasgow, UK, 2000), pp. 1201–5.

    Google Scholar 

  15. H. Nagel, A. Merkle, A. Metz, and R. Hezel, Permanent reduction of excess-carrier-induced recombination centers in solar-grade Cz silicon by a short yet effective anneal, Proc. 16th EC PVSEC (Glasgow, UK, 2000), pp. 1197–200.

    Google Scholar 

  16. R. Falster and V.V. Voronkov, Intrinsic point defects in silicon and their control in crystal growth and wafer processing, Proc. 11th Workshop on Crystalline Silicon Solar Cell Materials and Processes (East Park, Colorado, 2001).

    Google Scholar 

  17. R. Falster, V.V. Voronkov, and F. Quast, On the properties of the intrinsic point defects in silicon: A perspective from crystal growth and wafer processing, Physica Status Solidi B 222(1), 219–44 (2000).

    Article  ADS  Google Scholar 

  18. S. Inc., STATISTICA for Windows 5.1 (Tulsa, 1998).

    Google Scholar 

  19. J. Knobloch, S.W. Glunz, V. Henninger, W. Warta, et al., 21 % efficient solar cells processed from Czochralski-grown silicon, Proc. 13th EC PVSEC (Nice, France, 1995), pp. 9–12.

    Google Scholar 

  20. A.A. Istratov, H. Hieslmair, and E.R. Weber, Iron and its complexes in silicon, Appl. Phys. A A69(1), 13–44 (1999).

    Article  ADS  Google Scholar 

  21. L.C. Kimerling, M.T. Asom, J.L. Benton, P.J. Drevinsky, et al., Interstitial defect reactions in silicon, Proc. 15th International Conference on Defects in Semiconductors (Budapest, Hungary, 1988), pp. 141–50.

    Google Scholar 

  22. P.T. Landsberg, Recombination in Semiconductors (Cambridge University Press, 1991).

    Google Scholar 

  23. S.W. Glunz, S. Rein, and J. Knobloch, Stable Czochralski silicon solar cells using gallium-doped base material, Proc. 16th EC PVSEC (Glasgow, UK, 2000), pp. 1070–5.

    Google Scholar 

  24. W. Shockley and W.T.J. Read, Statistics of the recombinations of holes and electrons, Phys. Rev. 87(5), 835–42 (1952).

    Article  ADS  MATH  Google Scholar 

  25. S.W. Glunz, J. Schumacher, W. Warta, J. Knobloch, et al., Solar cells with mesh-structured emitter, Progr. Photovolt. 4(6), 415–24 (1996).

    Article  Google Scholar 

  26. R. Brendel, Note on the interpretation of injection-level-dependent surface recombination velocities, Appl. Phys. A 60, 523–4 (1995).

    Article  ADS  Google Scholar 

  27. R.A. Sinton and A. Cuevas, Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data, Appl. Phys. Lett. 69(17), 2510–2 (1996).

    Article  ADS  Google Scholar 

  28. H. Hashigami, Y. Itakura, A. Takaki, S. Rein, et al., Impact of carrier injection level on light-induced degradation of Cz-Si solar cell performance, Proc. 17th EC PVSEC (Munich, Germany, 2001), pp. 1483–6.

    Google Scholar 

  29. S.W. Glunz, E. Schäffer, S. Rein, K. Bothe, et al., Analysis of the defect activation in Cz-Silicon by temperature-dependent bias-induced degradation of solar cells, Proc. 3rd WCPEC (Osaka, Japan, 2003), pp. 919–22.

    Google Scholar 

  30. J. Schmidt and A. Cuevas, Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon, J. Appl. Phys. 86(6), 3175–80 (1999).

    Article  ADS  Google Scholar 

  31. S. Rein, T. Rehrl, W. Warta, S.W. Glunz, et al., Electrical and thermal properties of the metastable defect in boron-doped Czochralski silicon (Cz-Si), Proc. 17th EC PVSEC (Munich, Germany, 2001), pp. 1555–60.

    Google Scholar 

  32. R.A. Sinton, A. Cuevas, and M. Stuckings, Quasi-steady-state photoconductance, a new method for solar cell material and device characterization, Proc. 25th IEEE PVSC (Washington DC, USA, 1996), pp. 457–60.

    Google Scholar 

  33. M. Lax, Cascade capture of electrons in solids, Phys. Rev. 119(5), 1502–23 (1960).

    Article  ADS  Google Scholar 

  34. A. Hangleiter, Nonradiative recombination via deep impurity levels in silicon: Experiment, Phys. Rev. B 35(17), 9149–61 (1987).

    Article  ADS  Google Scholar 

  35. S. Rein and S.W. Glunz, Electronic properties of the metastable defect in boron-doped Cz silicon: Unambiguous determination by advanced lifetime spectroscopy, Appl. Phys. Lett. 82(7), 1054–56 (2003).

    Article  ADS  Google Scholar 

  36. D.K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, New York, 1990).

    Google Scholar 

  37. D. Karg, DLTS and MCTS measurements on boron-doped Cz-Si, private communication (2003).

    Google Scholar 

  38. T. Frank, H. Charifi, D. Karg, G. Pensl, et al., Recombination-active defect centers in oxygen-contaminated and boron-doped Cz-Si, Proc. 19th EC PVSEC (Paris, France, 2004), pp. 919–22.

    Google Scholar 

  39. I. Weinberg, S. Mehta, and C.K. Swartz, Increased radiation resistance in lithium-counterdoped silicon solar cells, Appl. Phys. Lett. 44(11), 1071–3 (1984).

    Article  ADS  Google Scholar 

  40. P.J. Drevinsky and H.M. DeAngelis, Interactions of interstitial silicon with B s and O i in electron-irradiated silicon, Proc. 13th International Conf. on Defects in Semiconductors (Coronado, CA, USA, 1985), pp. 807–13.

    Google Scholar 

  41. S.W. Glunz, S. Rein, J. Knobloch, W. Wettling, et al., Comparison of boron and gallium doped p-type Czochralski silicon for photovoltaic application, Progr. Photovolt. 7(6), 463–9 (1999).

    Article  Google Scholar 

  42. S.W. Glunz, S. Rein, W. Warta, J. Knobloch, et al., Degradation of carrier lifetime in Cz-Si solar cells, Proc. 11th PVSEC (Sapporo, Japan, 1999), pp. 549–52.

    Google Scholar 

  43. A. Borghesi, B. Pivac, A. Sassella, and A. Stella, Oxygen precipitation in silicon, J. Appl. Phys. 77(9), 4169–244 (1995).

    Article  ADS  Google Scholar 

  44. G. Obermeier, J. Hage, and D. Huber, Oxygen precipitation and denuded zone characterization with the electrolytical metal tracer technique, J. Appl. Phys. 82(2), 595–600 (1997).

    Article  ADS  Google Scholar 

  45. A. Borghesi, M. Geddo, B. Pivac, A. Sassella, et al., Quantitative determination of high-temperature oxygen microprecipitates in Czochralski silicon by micro-Fourier transform infrared spectroscopy, Appl. Phys. Lett. 58(19), 2099–2101 (1991).

    Article  ADS  Google Scholar 

  46. S.W. Glunz, J.Y. Lee, and S. Rein, Strategies for improving the efficiency of Cz-silicon solar cells, Proc. 28th IEEE PVSC (Anchorage, Alaska, USA, 2000), pp. 201–4.

    Google Scholar 

  47. S.W. Glunz, S. Rein, J.Y. Lee, and W. Warta, Minority carrier lifetime degradation in boron-doped Cz-silicon, J. Appl. Phys. 90(5), 2397–404 (2001).

    Article  ADS  Google Scholar 

  48. D.A. Clugston and P.A. Basore, PC1D version 5: 32-bit solar cell modeling on personal computers, Proc. 26th IEEE PVSC (Anaheim, California, USA, 1997), pp. 207–10.

    Google Scholar 

  49. A. Cuevas, M. Stuckings, J. Lau, and M. Petravic, The recombination velocity of boron diffused silicon surfaces, Proc. 14th EC PVSEC (Barcelona, Spain, 1997), pp. 2416–9.

    Google Scholar 

  50. S.W. Glunz, J. Knobloch, C. Hebling, and W. Wettling, The range of high-efficiency silicon solar cells fabricated at Fraunhofer ISE, Proc. 26th IEEE PVSC (Anaheim, California, USA, 1997), pp. 231–4.

    Google Scholar 

  51. J. Dicker, Analyse und Simulation von hocheffizienten Silizium Solarzellenstrukturen für industrielle Fertigungstechniken, Doktorarbeit, Universität Konstanz (2003).

    Google Scholar 

  52. S. Sterk, K.A. Münzer, and S.W. Glunz, Investigation of the degradation of crystalline silicon solar cells, Proc. 14th EC PVSEC (Barcelona, Spain, 1997), pp. 85–7.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). The metastable defect in boron-doped Czochralski silicon. In: Lifetime Spectroscopy. Springer Series in Material Science, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27922-9_6

Download citation

Publish with us

Policies and ethics