Riemann Problem for the Euler Equation with Non-Convex Equation of State including Phase Transitions

  • Wolfgang Dahmen
  • Siegfried Müller
  • Alexander Voß


An exact Riemann solver is developed for the investigation of non-classical wave phenomena in BZT fluids and fluids which undergo a phase transition. Here we outline the basic construction principles of this Riemann solver employing a general equation of state that takes negative nonlinearity and phase transition into account. This exact Riemann solver is a useful validation tool for numerical schemes, in particular, when applied to the aforementioned fluids. As an application, we present some numerical results where we consider flow fields exhibiting non-classical wave phenomena due to BZT fluids and phase transition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BBKN83]
    A.A. Borisov, Al.A. Borisov, S.S. Kutateladze, and V.E. Nakoryakov. Rarefaction shock wave near the crticial liquid vapor point. J. Fluid Mech., 126:59–73, 1983.CrossRefGoogle Scholar
  2. [BGMH+03]_F. Bramkamp, B. Gottschlich-Müller, M. Hesse, Ph. Lamby, S. Müller, J. Ballmann, K.-H. Brakhage, and W. Dahmen. H-Adaptive Multiscale Schemes for the Compressible Navier-Stokes Equations — Polyhedral Discretization, Data Compression and Mesh Generation. In J. Ballmann, editor, Numerical Notes on Fluid Mechanics, volume 84, pages 125–204. Springer, 2003.Google Scholar
  3. [DTMS79]
    G. Dettleff, P.A. Thompson, G.E.A. Meier, and H.-D. Speckmann. An experimental study of liquefaction shock waves. J. Fluid Mech., 95(2):279–304, 1979.CrossRefGoogle Scholar
  4. [Lam72]
    K.C. Lambrakis. Negative-Γ fluids. PhD thesis, Rensselaer Polytechnic Institute, 1972.Google Scholar
  5. [Liu75]
    T.-P. Liu. The Riemann problem for general systems of conservation laws. J. Diff. Eqns., 18:218–234, 1975.MATHCrossRefGoogle Scholar
  6. [Liu76]
    T.-P. Liu. The entropy condition and the admissibility of shocks. J. Math. Anal. Appl., 53:78–88, 1976.MATHMathSciNetCrossRefGoogle Scholar
  7. [MP89]
    R. Menikoff and B.J. Plohr. The Riemann problem for fluid flow of real materials. Rev. Mod. Physics, 61:75–130, 1989.MathSciNetCrossRefGoogle Scholar
  8. [MV01]
    S. Müller and A. Voss. On the existence of the composite curve near a degeneration point. Preprint IGPM 200, RWTH Aachen, 2001.Google Scholar
  9. [Smi79]
    R.G. Smith. The Riemann problem in gas dynamics. Trans. Amer. Math. Soc., 249(1):1–50, 1979.MATHMathSciNetCrossRefGoogle Scholar
  10. [TCK86]
    P. Thompson, G. Carafano, and Y.-G. Kim. Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube. J. Fluid. Mech., 166:57–92, 1986.MATHCrossRefGoogle Scholar
  11. [TCM+87]
    P.A. Thompson, H. Chaves, G.E.A. Meier, Y.-G. Kim, and H.-D. Speckmann. Wave splitting in a fluid of large heat capacity. J. Fluid Mech., 185:385–414, 1987.CrossRefGoogle Scholar
  12. [Tho72]
    P. Thompson. Compressible Fluid Dynamics. Rosewood Press, Troy, New York, 1972.MATHGoogle Scholar
  13. [Tho91]
    P. Thompson. Liquid-vapor adiabatic phase changes and related phenomena. In A. Kluwick, editor, Nonlinear waves in real fluids, pages 147–213. Springer, New York, 1991.Google Scholar
  14. [TK83]
    P. Thompson and Y.-G. Kim. Direct observation of shock splitting in a vapor-liquid system. Phys. Fluids, 26(11):3211–3215, 1983.CrossRefGoogle Scholar
  15. [Voß04]
    A. Voß. Exact Riemann Solution for the Euler Equations with Nonconvex and Nonsmooth Equation of State. PhD thesis, RWTH Aachen, submitted 2004.Google Scholar
  16. [Wen72a]
    B. Wendroff. The Riemann problem for materials with nonconvex equations of state, I: Isentropic flow. J. Math. Anal. Appl., 38:454–466, 1972.MATHMathSciNetCrossRefGoogle Scholar
  17. [Wen72b]
    B. Wendroff. The Riemann problem for materials with nonconvex equations of state, II: General flow. J. Math. Anal. Appl., 38:640–658, 1972.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Wolfgang Dahmen
    • 1
  • Siegfried Müller
    • 1
  • Alexander Voß
    • 1
  1. 1.Institut für Geometrie und Praktische MathematikRWTH AachenAachenGermany

Personalised recommendations