Random arborescent models

Part of the Universitext book series (UTX)


Open Cluster Iterate Logarithm Probability Generate Function Extinction Probability Spread Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.7 Bibliography

  1. •.
    Athreya, K. and Ney, P. (1972). Branching Processes. Springer-Verlag.Google Scholar
  2. •.
    Biggins, J. (1977). Chernoff's Theorem in the branching random walk. J. Appl. Prob.14 630–636.Google Scholar
  3. •.
    Grimmett, G. (1989). Percolation. Springer-Verlag.Google Scholar
  4. •.
    Guttorp, P. (1991). Statistical Inference for Branching Processes. Wiley Series in Probability and Mathematical Statistics.Google Scholar
  5. •.
    Jacob, C. and Peccoud, J. (1996). Theoretical uncertainty of measurements using quantitative polymerase. Biophys. J.71 101–108.PubMedGoogle Scholar
  6. •.
    Jagers, P. (1975). Branching Processes with Biological Applications. Wiley Series in Probability and Statistics.Google Scholar
  7. •.
    Laredo, C. and Rouault, A. (1983). Grandes déviations, dynamique de population et phénomèmes malthusiens. Ann. Inst. Poincaré.19 323–350.Google Scholar
  8. •.
    Le Corre, V. (1997). Organisation de la diversité génétique et histoire post-glaciaire des chênes blancs européens: approche expérimentale et par simulation. PhD thesis, Institut national agronomique.Google Scholar
  9. •.
    Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models. volume 10. Springer-Verlag, Biomathematics.Google Scholar
  10. •.
    Schinazi, R. (1999). Classical and Spatial Stochastic Processes. Birkhäuser.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations