Discrete-time dynamical systems

Part of the Universitext book series (UTX)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.5 Bibliography

  1. •.
    Costantino, R., Desharnais, R., Cushing, J. and Dennis, B. (1997). Chaotic dynamics in an insect population. Science. 275 389–391.CrossRefPubMedGoogle Scholar
  2. •.
    Feigenbaum, M. (1978). Quantitative universality for a class of nonlinear transformations. J. Stat. Phys.19 25–52.CrossRefGoogle Scholar
  3. •.
    Li, T. and Yorke, J. (1975). Period three implies chaos. Amer. Math. Monthly. 82 985–992.Google Scholar
  4. •.
    May, R. (1976). Simple mathematical models with very complicated dynamics. Nature. 261 459–467.CrossRefPubMedGoogle Scholar
  5. •.
    May, R. and Oster, G. (1976). Bifurcations and dynamic complexity in simple ecological models. Am. Nat.110 573–599.CrossRefGoogle Scholar
  6. •.
    Murray, J. (1990). Mathematical Biology. Springer-Verlag.Google Scholar
  7. •.
    Sarkovsky, A. (1964). Coexistence of cycles of a continuous map of a line into itself (in Russian). Ukr. Mat. Z.16 61–71.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations