Continuous-time dynamical systems

Part of the Universitext book series (UTX)


Competition Model Steady Solution Stable Steady State Stability Matrix Fisher Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.6 Bibliography

  1. •.
    Auer, C. (1977). Dynamik von Laerchenwickler-Populationen laengs des Alpenbogens (in German). Eidg. Anst. fuer Forstl. Versuchsweses. 53 71–105. Fasc. 2.Google Scholar
  2. •.
    Cushing, J. (1977). Integrodifferential Equations and Delay Models in Population Dynamic. Lecture Notes in Biomathematics, Springer-Verlag.Google Scholar
  3. •.
    Fife, P. (1979). Mathematical Aspects of Reacting and Diffusing Systems. volume 28. Lecture Notes in Biomathematics, Springer-Verlag.Google Scholar
  4. •.
    Goldbetter, A. (1996). Biochemical Oscillations and Cellular Rhythms: the Molecular Bases of Periodic and Chaotic Behavior. Cambridge University Press.Google Scholar
  5. •.
    Jolivet, E. (1983). Introduction aux modèles mathématiques en biologie. Masson.Google Scholar
  6. •.
    Kot, M. (2001). Elements of Mathematical Ecology. Cambridge University Press.Google Scholar
  7. •.
    Ludwig, D., Jones, D. and Holling, C. (1978). Qualitative analysis of insect outbreak systems: the spruce budworm and forest. J. Anim. Ecol.47 315–332.Google Scholar
  8. •.
    Ludwig, D., Aronson, D. and Weinberger, H (1979). Spatial patterning of the spruce budworm, J. Math. Biology8 217–258.Google Scholar
  9. •.
    Murray, J. (1990). Mathematical Biology. Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations