Skip to main content

Two Examples of Recent Crystal Development

  • Chapter
Book cover Inorganic Scintillators for Detector Systems

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 1544 Accesses

Abstract

Two examples of recent scintillator development are given in this chapter. They have been chosen in two different areas of applications to illustrate the common strategies, but also the differences in the approach. Lead tungstate illustrates particularly well how large and very challenging fundamental research projects are instrumental in pushing the limits of detector performances to meet an ambitious scientific goal. On the other hand, Lutetium perovskite crystals, although developed up to mass scale production by an acamedic consortium (the Crystal Clear Collaboration), is a crystal to be used mainly in commercial systems like medical imaging devices. It is therefore constrained not only by technical considerations but also by a severe competition environment, as any new commercial product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R&D Proposal for the study of new fast and radiation hard scintillators for calorimetry at LHC: Crystal Clear Collaboration, CERN/DRDC P27/91-15, project RD-18

    Google Scholar 

  2. Adeva B, Aguilar-Benitez M, Akbari H et al. (1990) The construction of the L3 experiment. Nucl. Instrum. Methods Phys. Res. A 289: 35–100

    Article  ADS  Google Scholar 

  3. CMS Technical Proposal, CERN/LHCC 94-38, December 1994

    Google Scholar 

  4. ALICE Collaboration Technical Proposal, CERN/LHCC/95-71

    Google Scholar 

  5. ISTC: International Science and Technology Center. www.istc.ru

    Google Scholar 

  6. Annenkov A, Auffray E, Borisevich A et al. (1999) Suppression of the radiation damage in lead tungstate scintillation crystal. Nucl. Instrum. Methods Phys. Res. A 426: 486–490

    Article  ADS  Google Scholar 

  7. The BteV proposal, March 2002, BteV-doc-316

    Google Scholar 

  8. MECO Collaboration (1999) A proposal to the National Science Foundation to construct the MECO and KORPIO experiments http://meco.ps.uci.edu

    Google Scholar 

  9. PrimEx Conceptual Design Report. A precision measurement of the neutral pion lifetime via the Primakof effect. Jefferson Lab, March 3, 2000

    Google Scholar 

  10. Barsov S, Bechstedt U, Bothe W et al. (2001) ANKE, a new facility for medium energy hadron physics at COSY-Jülich. Nucl. Instrum. Methods Phys. Res. A 462: 364–381

    Article  ADS  Google Scholar 

  11. Melcher CL, Schweitzer JS (1992) Cerium-doped lutetium orthosilicate: a fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39: 502–505

    Article  ADS  Google Scholar 

  12. Lempicki A, Berman E, Wojtowicz AJ et al. (1993) Cerium-doped orthophosphates: new promising scintillators. IEEE Trans. Nucl. Sci. 40: 384–387

    Article  ADS  Google Scholar 

  13. Van Eijk CWE, Andriessen J, Dorenbos P et al. (1994) Ce3+ doped inorganic scintillators. IEEE Trans. Nucl. Sci. A 348: 546–550

    Google Scholar 

  14. Ryskin NN, Dorenbos P, Van Eijk CWE et al. (1994) Scintillation properties of Lu3Al5−x ScxO12 crystals. J. Phys.: Condens. Matter 6: 10423–10434

    Article  ADS  Google Scholar 

  15. Moses WW, Derenzo SE, Fyodorov A et al. (1995) LuAlO3:Ce—a high density, high speed scintillator for gamma detection. IEEE Trans. Nucl. Sci. 42: 275–279

    Article  ADS  Google Scholar 

  16. Minkov BI (1994) Promising new lutetium based single crystals for fast scintillators. Funct. Mater. 1: 103–105

    Google Scholar 

  17. Lempicki A, Randles MH, Wisniewski D et al. (1995) LuAlO3:Ce and other aluminate scintillators. IEEE Trans. Nucl. Sci. 42: 280–284

    Article  ADS  Google Scholar 

  18. Pauwels D, Le Masson N, Viana B et al. (2000) A novel inorganic scintillator: Lu2Si2O7:Ce3+ (LPS). IEEE Trans. Nucl. Sci. 47: 1787–1790

    Article  ADS  Google Scholar 

  19. Weber MJ (1973) Optical spectra of Ce3+ sensitized fluorescence in YAlO3. J. Appl. Phys. 44: 3205–3208

    Article  ADS  Google Scholar 

  20. Autrata R, Schouer P, Kvapil Jiri et al. (1983) A single crystal of YAlO3:Ce3+ as fast scintillator in SEM. Scanning 5: 91–96

    Google Scholar 

  21. Baryshevsky VG, Korzhik MV, Moroz VI et al. (1991) YAlO3:Ce—fast-acting scintillators for detection of ionizing radiation. Nucl. Instrum. Methods Phys. Res. B 58: 291–293

    Article  ADS  Google Scholar 

  22. Korzhik MV, Misevich OV, Fyodorov AA (1999) YAlO3:Ce scintillators: application for X-and soft γ-ray detection. Nucl. Instrum. Methods Phys. Res. B 72: 499–501.

    Article  ADS  Google Scholar 

  23. Smirnova SA, Korzhik MV (1996) Growth of crystals yttrium-aluminum perovskites with rare earth elements. In: Dorenbos P, van Eijk CWE (Eds). Proc. Int. Conf. on Inorganic Scintillators and Their Applications, SCINT’95. Delft University Press, The Netherlands, pp 495–497

    Google Scholar 

  24. Trower WP, Korzhik MV, Fedorov AA et al. (1996) Cerium doped luthetium-based single crystal scintillator. In: Dorenbos P, van Eijk CWE (Eds). Proc. Int. Conf. on Inorganic Scintillators and Their Applications, SCINT’95. Delft University Press, The Netherlands, pp 355–358

    Google Scholar 

  25. A PET scanner. Patent WO03/001242A1

    Google Scholar 

  26. Weber S, Christ D, Kurzeja M et al. (2003) Comparison of LuYAP, LSO, and BGO as scintillators for high resolution PET detectors. IEEE Trans. Nucl. Sci. 50: 1370–1372

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Two Examples of Recent Crystal Development. In: Inorganic Scintillators for Detector Systems. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27768-4_6

Download citation

Publish with us

Policies and ethics