Advertisement

Physiologie und Pathophysiologie von Mesh-Implantaten — Gibt es das ideale Netz?

  • C. Reißfelder

Zusammenfassung

Die moderne Chirurgie ist ohne Mesh-Implantate heutzutage nicht mehr vorstellbar. Weltweit werden zur Zeit ca. 1 Mio. Netze pro Jahr implantiert. Während die Implantation von Kunststoffnetzen in den 60er-Jahren noch als unkonventioneller Schritt in der Hernienreparation angesehen wurde, stützt sich heute die Hernienchirurgie zunehmend auf den Einsatz dieser alloplastischen Materialien (Luijendijk et al. 2000). Insbesondere in der Leistenhernienchirurgie ist es durch das Verfahren nach Lichtenstein zu einer starken Verbreitung der Hernienreparation mit Mesh-Implantaten gekommen. Spezielle laparoskopische Reparationsverfahren wurden durch die Implantation von Kunststoffnetzen erst möglich.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amid PK, Lichtenstein IL (1997) Current assessment of Lichtenstein tension-free hernia repair. Chirurg 68: 959–64PubMedCrossRefGoogle Scholar
  2. Avtan L, Avci C, Bulut T, Fourtanier G (1997) Mesh infections after laparoscopic inguinal hernia repair. Surg Laparosc Endosc 7: 192–5PubMedGoogle Scholar
  3. Bellòn JM, Bujàn J, Contreras L, Hernando A (1995) Integration of biomaterials implanted into abdominal wall: process of scar formation and macrophage response. Biomaterials 16: 381–7PubMedGoogle Scholar
  4. Coda A, Bendavid R, Botto-Micca F, Bossotti M, Bona A (2003) Structural alterations of prosthetic meshes in humans. Hernia 7: 29–34PubMedGoogle Scholar
  5. Downey GP (1994) Mechanisms of leukocyte motility and chemotaxis. Curr Opin Immunol 6: 113–24PubMedCrossRefGoogle Scholar
  6. Efron JE, Frankel HL, Lazarou SA, Wasserkrug HL, Barbul A (1990) Wound healing and T-lymphocytes. J Surg Res 48: 460–3PubMedCrossRefGoogle Scholar
  7. Ehrlich HP, Hunt TK (1968) Effects of cortisone and vitamine A on wound healing. Ann Surg 167: 324–8PubMedGoogle Scholar
  8. Foschi D, Corsi F, Cellerino P, Trabucchi A, Trabucchi E (1998) Late rejection of the mesh after laparoscopic hernia repair. Surg Endosc 12: 455–7PubMedCrossRefGoogle Scholar
  9. Gailit J, Clark RAF (1994) Wound repair in the context of extracellular matrix. Curr Opin Cell Biol 6: 717–25PubMedCrossRefGoogle Scholar
  10. Hume RH, Bour J (1996) Mesh migration following laparoscopic inguinal hernia repair. J Laparoendosc Surg 6: 333–5PubMedGoogle Scholar
  11. Imhof BA, Dunon D (1995) Leukocyte migration and adhesion. Adv Immunol 58: 345–416PubMedCrossRefGoogle Scholar
  12. Klinge U et al. (1998) Modified mesh for hernia repair that is adapted to physiology of the abdominal wall. Eur J Surg 164: 951–60PubMedGoogle Scholar
  13. Klinge U, Klosterhalfen B, Müller M, Öttinger AP, Schumpelick V (1998) Shrinking of Polypropylene Mesh in vivo: An experimental study in dogs. Eur J Surg 164: 965–9PubMedGoogle Scholar
  14. Klosterhalfen B, Klinge U, Hermanns B, Schumpelick V (2000) Pathology of traditional surgical nets for hernia repair after long-term implantation in humans. Chirurg 71: 43–51PubMedGoogle Scholar
  15. Leber GE, Garb JL, Alexander AI, Reed WP (1998) Long-term complications associated with prosthetic repair of incisional hernias. Arch Surg 133: 378–82PubMedGoogle Scholar
  16. LeBlanc KA, Booth WV, Whitaker JM, Baker D (1998) In vivo study of meshes implanted over the inguinal ring and external iliac vessels in uncastrated pigs. Surg Endosc 12: 247–51PubMedCrossRefGoogle Scholar
  17. Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78: 71–100PubMedGoogle Scholar
  18. Liles WC, Van Voorhis WC (1995) Review: nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J Infect Dis 172: 1573–80PubMedGoogle Scholar
  19. Luijendijk RW et al. (2000) A comparison of suture repair with mesh repair for incisional hernia. N Engl J Med 343: 392–8PubMedCrossRefGoogle Scholar
  20. Schäffer M, Becker HD (1999) Immune regulation of wound healing. Chirurg 70: 897–908PubMedGoogle Scholar
  21. Scheidbach H, Tamme C, Tannapfel A, Lippert H, Köckerling F (2003) In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during endoscopic total extraperitoneal (TEP) patchplasty: an experimental study in pigs. Surg Endosc 18: 211–20PubMedGoogle Scholar
  22. Schumpelick V, Klinge U, Welty G, Klosterhalfen B (1999) Meshes within the abdominal wall. Chirurg 70: 876–87PubMedGoogle Scholar
  23. Schumpelick V, Klosterhalfen B, Müller M, Klinge U (1999) Minimized polypropylene mesh for preperitoneal net plasty (PNP) of incisional hernias. Chirurg 70: 422–30PubMedGoogle Scholar
  24. Tang L, Eaton JW (1995) Inflammatory responses to biomaterials. Am J Clin Pathol 103: 466–71PubMedGoogle Scholar
  25. Vroman L, Adams AL (1969) Identification of absorbed protein films by exposure to antisera and water vapor. J Biomed Mater Res 3: 669–71PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2006

Authors and Affiliations

  • C. Reißfelder
    • 1
  1. 1.Chirurgische Klinik und PoliklinikCharité — Universitätsmedizin Berlin, Campus Benjamin FranklinBerlin

Personalised recommendations