Numerical experiments

Part of the Springer Series in Computational Mathematics book series (SSCM, volume 37)


Mach Number Boltzmann Equation Left Plot Thin Solid Line Local Thermal Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.5.6 Bibliographic remarks

  1. 50.
    C. Cercignani. Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations. Cambridge Texts in Applied Mathematics. Cambridge University Press, 2000.Google Scholar
  2. 141.
    H. Mott-Smith. The solution of the Boltzmann equation for a shock wave. Phys. Rev., 82:885–892, 1951.CrossRefGoogle Scholar
  3. 142.
    C. Muckenfuss. Some aspects of shock structure according to the bimodal model. Phys. Fluids, 5(11):1325–1336, 1962.CrossRefGoogle Scholar
  4. 209.
    S.-M. Yen. Temperature overshoot in shock waves. Phys. Fluids, 9(7):1417–1418, 1966.CrossRefGoogle Scholar

4.6.4 Bibliographic remarks

  1. 22.
    G. A. Bird. Transition regime behavior of supersonic beam skimmers. Phys. Fluids, 19(10):1486–1491, 1976.CrossRefGoogle Scholar
  2. 39.
    I. D. Boyd. Conservative species weighting scheme for the direct simulation Monte Carlo method. J. of Thermophysics and Heat Transfer, 10(4):579–585, 1996.Google Scholar
  3. 181.
    S. Rjasanow and W. Wagner. Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation. Math. Comput. Modelling, 33(8–9):907–926, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations