Skip to main content

Mutable Collagenous Tissue: Overview and Biotechnological Perspective

  • Chapter
Echinodermata

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 39))

Abstract

The mutable collagenous tissue (MCT) of echinoderms can undergo extreme changes in passive mechanical properties within a timescale of less than 1 s to a few minutes, involving a mechanism that is under direct neural control and coordinated with the activities of muscles. MCT occurs at a variety of anatomical locations in all echinoderm classes, is involved in every investigated echinoderm autotomy mechanism, and provides a mechanism for the energy-sparing maintenance of posture. It is therefore crucially important for the biology of extant echinoderms. This chapter summarises current knowledge of the physiology and organisation of MCT, with particular attention being given to its molecular organisation and the molecular mechanism of mutability. The biotechnological potential of MCT is discussed. It is argued that MCT could be a source of, or inspiration for, (1) new pharmacological agents and strategies designed to manipulate therapeutically connective tissue mechanical properties and (2) new composite materials with biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew NL, Agatsuma Y, Ballesteros E, Bazhin AG, Creaser EP, Barnes DKA, Botsford LW, Bradbury A, Campbell A, Dixon J, Einarsson S, Gerring PK, Hebert K, Hunter M, Hur SB, Johnson CR, Juinio-Menez MA, Kalvass P, Miller RJ, Moreno CA, Palleiro JS, Rivas D, Robinson SML, Schroeter SC, Steneck RS, Vadas RL, Woodby DA, Xiaoqi Z (2002) Status and management of world sea urchin fisheries. Oceanogr Mar Biol Annu Rev 40:343–425

    Google Scholar 

  • Bauer AM, Russell AP, Shadwick RE (1989) Mechanical properties and morphological correlates of fragile skin in gekkonid lizards. J Exp Biol 145:79–102

    Google Scholar 

  • Birenheide R, Motokawa T (1994) Morphological basis and mechanics of arm movement in the stalked crinoid Metacrinus rotundus (Echinodermata, Crinoida). Mar Biol 121:273–283

    Article  Google Scholar 

  • Birenheide R, Motokawa T (1995) Motility and stiffness of cirri of the stalked crinoid Metacrinus rotundus. In: Emson RH, Smith AB, Campbell AC (eds) Echinoderm research 1995. AA Balkema, Rotterdam, pp 91–94

    Google Scholar 

  • Birenheide R, Motokawa T (1996) Contractile connective tissue in crinoids. Biol Bull 191:1–4

    PubMed  Google Scholar 

  • Birenheide R, Motokawa T (1998) Crinoid ligaments: catch and contractility. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. AA Balkema, Rotterdam, pp 139–144

    Google Scholar 

  • Birenheide R, Tsuchi A, Motokawa T (1996) To be stiff or to be soft — the dilemma of the echinoid tooth ligament. II. Mechanical properties. Biol Bull 190:231–236

    Google Scholar 

  • Birenheide R, Yokoyama K, Motokawa T (2000) Cirri of the stalked crinoid Metacrinus rotundus: neural elements and the effect of cholinergic agonists on mechanical properties. Proc R Soc Lond B 267:7–16

    Article  Google Scholar 

  • Bonasoro F, Wilkie IC, Bavestrello G, Cerrano C, Candia Carnevali MD (2001) Dynamic structure of the mesohyl in the sponge Chondrosia reniformis (Porifera, Demospongiae). Zoomorphology 121:109–121

    Google Scholar 

  • Bornstein P, Armstrong LC, Hankenson KD, Kyriakides TR, Yang Z (2000) Thrombospondin 2, a matricellular protein with diverse functions. Matrix Biol 19:557–568

    Article  PubMed  Google Scholar 

  • Bruel A, Oxlund H (1996) Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127:155–165

    Article  PubMed  Google Scholar 

  • Bryant-Greenwood GD (1998) The extracellular matrix of the human fetal membranes: structure and function. Placenta 19:1–11

    Article  PubMed  Google Scholar 

  • Buchanan CI, Marsh RL (2002) Effects of exercise on the biomechanical, biochemical and structural properties of tendons. Comp Biochem Physiol 133A:1101–1107

    Google Scholar 

  • Byrne M (2001) The Echinodermata. In: Anderson DT (ed) Invertebrate zoology, 2nd edn. Oxford University Press, Sydney, pp 366–395

    Google Scholar 

  • Campo GM, Avenoso A, Campo S, Ferlazza A, Altavilla D, Micali C, Calatroni A (2003) Aromatic trap analysis of free radicals production in experimental collagen-induced arthritis in the rat: protective effect of glycosaminoglycans treatment. Free Radical Res 37:257–268

    Article  Google Scholar 

  • Chakravarti S (2002) Functions of lumican and fibromodulin: lessons from knockout mice. Glycoconjugate J 19:287–293

    Article  Google Scholar 

  • Chiquet M (1999) Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol 18:417–426

    PubMed  Google Scholar 

  • Chvapil M (1988) Method of treatment of fibrotic lesions by topical administration of lathyrogenic drugs. In: Nimni ME (ed) Collagen, vol 2. CRC Press, Boca Raton, pp 161–175

    Google Scholar 

  • Clément P (1993) The phylogeny of rotifers: molecular, ultrastructural and behavioural data. Hydrobiologia 255/256:527–544

    Article  Google Scholar 

  • Cluzel C, Lethias C, Garrone R, Exposito J-Y (2000) Sea urchin fibrillar collagen 2α chain participates in heterotrimeric molecules of (1 α)2 α stoichiometry. Matrix Biol 19:545–547

    Article  PubMed  Google Scholar 

  • Cluzel C, Lethias C, Humbert F, Garrone R, Exposito J-Y (2001) Characterization of fibrosurfin, an interfibrillar component of sea urchin catch connective tissue. J Biol Chem 276:18108–18114

    Article  PubMed  Google Scholar 

  • Cobb JLS (1985) Motor innervation of the oral plate ligament in the brittlestar Ophiura ophiura (L.). Cell Tissue Res 242:685–688

    Article  Google Scholar 

  • Conand C (2001) Overview of sea cucumbers fisheries over the last decade — what possibilities for a durable management? In: Barker MF (ed) Echinoderms 2000. Swets and Zeitlinger, Lisse, pp 339–344

    Google Scholar 

  • D'Alessio M, Ramirez F, Suzuki HR, Solursh M, Gambino R (1989) Structure and developmental expression of a sea urchin fibrillar collagen gene. Proc Natl Acad Sci USA 86:9303–9307

    PubMed  Google Scholar 

  • D'Alessio M, Ramirez F, Suzuki HR, Solursh M, Gambino R (1990) Cloning of a fibrillar collagen gene expressed in the mesenchymal cells of the developing sea urchin embryo. J Biol Chem 265:7050–7054

    PubMed  Google Scholar 

  • DeFrate LE, van der Ven A, Gill TJ, Li G (2004) The effect of length on the structural properties of an Achilles tendon graft as used in posterior cruciate ligament reconstruction. Am J Sports Med 32:993–997

    Article  PubMed  Google Scholar 

  • Del Castillo J, Smith DS (1996) We still invoke friction and Occam's razor to explain catch in the spines of Eucidaris tribuloides. Biol Bull 190:243–244

    PubMed  Google Scholar 

  • Del Castillo J, Smith DS, Vidal AM, Sierra C (1995) Catch in the primary spines of the sea urchin Eucidaris tribuloides: a brief review and a new interpretation. Biol Bull 188:120–127

    PubMed  Google Scholar 

  • Delehedde M, Allain F, Payne SJ, Borgo R, Vanpouille C, Fernig DG, Deudon E (2002) Proteoglycans in inflammation. Curr Med Chem Anti-inflam Anti-allergy Agents 1:89–102

    Article  Google Scholar 

  • Ellers O, Telford M (1996) Advancement mechanics of growing teeth in sand dollars (Echinodermata, Echinoidea): a role for mutable collagenous tissue. Proc R Soc Lond B 263:39–44

    Google Scholar 

  • Elphick MR, Melarange M (2001) Neural control of muscle relaxation in echinoderms. J Exp Biol 204:875–885

    PubMed  Google Scholar 

  • Erlinger R, Welsch U, Scott JE (1993) Ultrastructural and biochemical observations on proteoglycans and collagen in the mutable connective tissue of the feather star Antedon bifida (Echinodermata, Crinoidea). J Anat 183:1–11

    PubMed  Google Scholar 

  • Exposito J-Y, D'Alessio M, Solursh M, Ramirez F (1992) Sea urchin collagen evolutionarily homologous to vertebrate pro-α2(I) collagen. J Biol Chem 267:15559–15562

    PubMed  Google Scholar 

  • Fredalina BD, Ridzwan BH, Zainal Abidin AA, Kaswandi MA, Zaiton H, Zali I, Kittakoop P, Mat Jais AM (1999) Fatty acid composition in local sea cucumber, Stichopus chloronotus, for wound healing. Gen Pharmacol 33:337–340

    Article  PubMed  Google Scholar 

  • Garronne R (1978) Phylogenesis of connective tissue. Morphological aspects and biosynthesis of sponge intercellular matrix. In: Robert L (ed) Frontiers of matrix biology, vol 5. S Karger, Basel

    Google Scholar 

  • Gupte CM, Smith A, Jamieson N, Bull AMJ, Thomas RD, Amis AA (2002) Meniscofemoral ligaments — structural and material properties. J Biomech 35:1623–1629

    Article  PubMed  Google Scholar 

  • Hidaka M, Takahashi K (1983) Fine structure and mechanical properties of the catch apparatus of the sea-urchin spine, a collagenous connective tissue with muscle-like holding capacity. J Exp Biol 103:1–14

    Google Scholar 

  • Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S (1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17:1083–1086

    Article  PubMed  Google Scholar 

  • Jiaxin C (2003) Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Info Bull 18:18–23

    Google Scholar 

  • Johnson AS, Ellers O, Lemire J, Minor M, Leddy HA (2002) Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins. Proc R Soc Biol Sci 269:215–220

    Article  Google Scholar 

  • Kannus P (2000) Structure of tendon connective tissue. Scand J Med Sci Sports 10:312–320

    Article  PubMed  Google Scholar 

  • Kariya Y, Watabe S, Kyogashima M, Ishihara M, Ishii T (1997) Structure of fucose branches in the glycosaminoglycans from the body wall of the sea cucumber Stichopus japonicus. Carbohydr Res 297:273–279

    Article  PubMed  Google Scholar 

  • Kolarik J (1995) Composite artificial tendons with hydrogel matrix. Coll Czech Chem Commun 60:1995–2005

    Article  Google Scholar 

  • Koob TJ (2002) Biomimetic approaches to tendon repair. Comp Biochem Physiol 133A:1171–1192

    Google Scholar 

  • Koob TJ, Koob-Emunds MM, Trotter JA (1999) Cell-derived stiffening and plasticizing factors in sea cucumber (Cucumaria frondosa) dermis. J Exp Biol 202:2291–2301

    PubMed  Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Article  PubMed  Google Scholar 

  • Lethias C, Exposito JY, Garrone R (1997) Collagen fibrillogenesis during sea urchin development. Retention of SURF motifs from the N-propeptide of the 2α chain in mature fibrils. Eur J Biochem 245:434–440

    Article  PubMed  Google Scholar 

  • Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebr Biol 123:1–22

    Google Scholar 

  • Matsumura T (1973) Shape, size and amino acid composition of collagen fibril of the starfish Asterias amurensis. Comp Biochem Physiol 44B:1197–1205

    Google Scholar 

  • Matsumura T, Shinmei M, Nagai Y (1973) Disaggregation of connective tissue: preparation of fibrous components from sea cucumber body wall and calf skin. J Biochem 73:155–162

    PubMed  Google Scholar 

  • Morales M, del Castillo J, Smith DS (1989) Acetylcholine sensitivity of the spine-test articular capsule of the sea urchin Eucidaris tribuloides. Comp Biochem Physiol 94C:547–554

    Google Scholar 

  • Motokawa T (1982) Fine structure of the dermis of the body wall of the sea cucumber, Stichopus chloronotus, a connective tissue which changes its mechanical properties. Galaxea 1:55–64

    Google Scholar 

  • Motokawa T (1983) Mechanical properties and structure of the spine-joint central ligament of the sea urchin, Diadema setosum (Echinodermata, Echinoidea). J Zool Lond 201:223–235

    Google Scholar 

  • Motokawa T, Tsuchi A (2003) Dynamic mechanical properties of body-wall dermis in various mechanical states and their implications for the behaviour of sea cucumbers. Biol Bull 205:261–275

    PubMed  Google Scholar 

  • Motokawa T, Shintani O, Birenheide R (2004) Contraction and stiffness changes in collagenous arm ligaments of the stalked crinoid Metacrinus rotundus (Echinodermata). Biol Bull 206:4–12

    PubMed  Google Scholar 

  • Munns SW, Jayaraman G, Luallin SR (1994) Effects of pretwist on biomechanical properties of canine patellar tendon. Arthroscopy 10:404–411

    PubMed  Google Scholar 

  • Nagai T, Suzuki N (2002) Collagen from the underutilized resources of aquatic organisms. Trends Comp Biochem Physiol 9:259–268

    Google Scholar 

  • Nordin M, Frankel VH (1980) Biomechanics of collagenous tissues. In: Frankel VH, Nordin M (eds) Basic biomechanics of the skeletal system. Lea and Febiger, Philadelphia, pp 87–110

    Google Scholar 

  • Omura Y, Urano N, Kimura S (1996) Occurrence of fibrillar collagen with structure of (α1)2 α2 in the test of sea urchin Asthenosoma ijimai. Comp Biochem Physiol 115B:63–68

    Google Scholar 

  • O'Neill PO (1989) Structure and mechanics of starfish body wall. J Exp Biol 147:53–89

    PubMed  Google Scholar 

  • O'Neill PO, Withers PC (1995) An analysis of the load curve of the body wall of Coscinasterias calamaria (Echinodermata: Asteroidea). Mar Fresh Behav Physiol 25:245–260

    Google Scholar 

  • Pérez-Acevedo NL, Marrero H, del Castillo J (1998) Transient wrinkles in a variable length tendon. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. AA Balkema, Rotterdam, pp 783–790

    Google Scholar 

  • Peters BH (1985) The innervation of spines in the sea-urchin Echinus esculentus L. Cell Tissue Res 239:219–228

    Article  Google Scholar 

  • Ramos-e-Silva M, Ribeiro de Castro MC (2002) New dressings, including tissue-engineered living skin. Dermatol Clin 20:715–723

    Article  Google Scholar 

  • Redaelli A, Vesentini S, Soncini M, Vena P, Mantero S, Montevecchi FM (2003) Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons — a computational study from molecular to microstructural level. J Biomech 36:1555–1569

    Article  PubMed  Google Scholar 

  • Reddy GK, Stehno-Bittel L, Enwemeka CS (2002) Glycation-induced matrix stability in the rabbit Achilles tendon. Arch Biochem Biophys 399:174–180

    Article  PubMed  Google Scholar 

  • Robinson JJ (1997) Comparative biochemical analysis of sea urchin peristome and rat tail tendon collagen. Comp Biochem Physiol 117B:307–313

    Google Scholar 

  • Robker RL, Russell DL, Yoshioka S, Sharma CS, Lydon JP, O'Malley BW, Espey LL, Richards JS (2000) Ovulation: a multi-gene, multi-step process. Steroids 65:559–570

    Article  PubMed  Google Scholar 

  • Sarras MP, Deutzmann R (2001) Hydra and Niccolo Paganini (1782–1840) — two peas in a pod? The molecular basis of extracellular matrix structure in the invertebrate, Hydra. BioEssays 23:716–724

    Article  PubMed  Google Scholar 

  • Sennström MB, Brauner A, Byström B, Malmström A, Ekman G (2003) Matrix metalloproteinase-8 correlates with the cervical ripening process in humans. Acta Obstet Gynecol Scand 82:904–911

    Article  PubMed  Google Scholar 

  • Silver FH, Freeman JW, Seehra GP (2003) Collagen self-assembly and the development of tendon mechanical properties. J Biomech 36:1529–1553

    Article  PubMed  Google Scholar 

  • Suzumori K (1996) Elastic materials producing compliant robots. Robotics Auton Syst 18:135–140

    Article  Google Scholar 

  • Syed T, Schierwater B (2002) The evolution of the Placozoa: a new morphological model. Senckenbergiana Lethaea 82:315–324

    Google Scholar 

  • Szulgit GK, Shadwick RE (1994) The effects of calcium chelation and cell perforation on the mechanical properties of sea urchin ligaments. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time. AA Balkema, Rotterdam, pp 887–892

    Google Scholar 

  • Szulgit GK, Shadwick RE (1998) Novel non-cellular adhesion and tissue grafting in the mutable collagenous tissue of the sea cucumber Parastichopus parvimensis. J Exp Biol 201:3003–3013

    Google Scholar 

  • Szulgit GK, Shadwick RE (2000) Dynamic mechanical characterization of a mutable collagenous tissue: response of sea cucumber dermis to cell lysis and dermal extracts. J Exp Biol 203:1539–1550

    PubMed  Google Scholar 

  • Takemae N, Motokawa T (2002) Is muscular contraction necessary for the stiffness changes of catch apparatus? Zool Sci 19:1460

    Google Scholar 

  • Thurmond FA, Trotter JA (1994) Native collagen fibrils from echinoderms are molecularly bipolar. J Mol Biol 235:73–79

    PubMed  Google Scholar 

  • Thurmond FA, Trotter JA (1996) Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J Exp Biol 199:1817–1828

    PubMed  Google Scholar 

  • Thurmond FA, Koob TJ, Bowness JM, Trotter JA (1997) Partial biochemical and immunological characterization of fibrillin microfibrils from sea cucumber dermis. Conn Tissue Res 36:211–222

    Google Scholar 

  • Tipper JP, Lyons-Levy G, Atkinson MAL, Trotter JA (2003) Purification, characterization and cloning of tensilin, the collagen-fibril binding and tissue stiffening factor from Cucumaria frondosa dermis. Matrix Biol 21:625–635

    Article  Google Scholar 

  • Tomita M, Kinoshita T, Izumi S, Tomino S, Yoshizato K (1994) Characterizations of sea urchin fibrillar collagen and its cDNA clone. Biochim Biophys Acta 1217:131–140

    PubMed  Google Scholar 

  • Trotter JA, Chino K (1997) Regulation of cell-dependent viscosity in the dermis of the sea cucumber Actinopyga agassizi. Comp Biochem Physiol 118A:805–811

    Article  Google Scholar 

  • Trotter JA, Koob TJ (1989) Collagen and proteoglycan in a sea urchin ligament with mutable collagenous properties. Cell Tissue Res 258:527–539

    Article  PubMed  Google Scholar 

  • Trotter JA, Koob TJ (1994) Biochemical characterization of fibrillar collagen from the mutable spine ligament of the sea-urchin Eucidaris tribuloides. Comp Biochem Physiol 107B:125–134

    Google Scholar 

  • Trotter JA, Koob TJ (1995) Evidence that calcium-dependent cellular processes are involved in the stiffening response of holothurian dermis and that dermal cells contain an organic stiffening factor. J Exp Biol 198:1951–1961

    PubMed  Google Scholar 

  • Trotter JA, Thurmond FA, Koob TJ (1994) Molecular structure and functional morphology of echinoderm collagen fibrils. Cell Tiss Res 275:451–458

    Article  Google Scholar 

  • Trotter JA, Lyons-Levy G, Thurmond FA, Koob TJ (1995) Covalent composition of collagen fibrils from the dermis of the sea cucumber, Cucumaria frondosa, a tissue with mutable mechanical properties. Comp Biochem Physiol 112A:463–478

    Article  Google Scholar 

  • Trotter JA, Lyons-Levy G, Luna D, Koob TJ, Keene D, Atkinson MAL (1996) Stiparin: a glycoprotein from sea cucumber dermis that aggregates collagen fibrils. Matrix Biol 15:99–110

    Article  PubMed  Google Scholar 

  • Trotter JA, Dahners L, de Vente J, Lester G (1997) Isolation of intact collagen fibrils from healing ligament. J Electron Microsc 46:353–356

    Google Scholar 

  • Trotter JA, Chapman JA, Kadler KE, Holmes DF (1998) Growth of sea cucumber collagen fibrils occurs at the tips and centers in a coordinated manner. J Mol Biol 284:1417–1424

    Article  PubMed  Google Scholar 

  • Trotter JA, Lyons-Levy G, Chino K, Koob TJ, Keene DR, Atkinson MAL (1999) Collagen fibril aggregation inhibitor from sea cucumber dermis. Matrix Biol 18:569–578

    Article  PubMed  Google Scholar 

  • Trotter JA, Kadler KE, Holmes DF (2000a) Echinoderm collagen fibrils grow by surfacenucleation-and-propagation from both centers and ends. J Mol Biol 300:531–540

    Article  PubMed  Google Scholar 

  • Trotter JA, Tipper J, Lyons-Levy G, Chino K, Heuer AH, Liu Z, Mrksich M, Hodneland C, Dillmore WS, Koob TJ, Koob-Emunds MM, Kadler K, Holmes D (2000b) Towards a fibrous composite with dynamically controlled stiffness: lessons from echinoderms. Biochem Soc Trans 28:357–362

    PubMed  Google Scholar 

  • Uldbjerg N (1994) Connective tissue changes related to cervical maturation. Eur J Obstet Gynecol Reprod Biol 55:8

    Article  Google Scholar 

  • Vidal AM, del Castillo J, Smith DS (1993) contractile properties of the articular capsule or ligament, in the primary spines of the sea-urchin Eucidaris tribuloides. Comp Biochem Physiol 106C:643–647

    Google Scholar 

  • Villasin J, Pomory CM (2000) Antibacterial activity of extracts from the body wall of Parastichopus parvimensis (Echinodermata: Holothuroidea). Fish Shellfish Immunol 10:465–467

    Article  PubMed  Google Scholar 

  • Vogel HG (1980) Influence of maturation and aging on mechanical and biochemical properties of connective tissue in rats. Mech Ageing Dev 14:283–292

    Article  PubMed  Google Scholar 

  • Welsch U, Lange A, Bals R, Heinzeller T (1995) Juxtaligamental cells in feather stars and isocrinids. In: Emson RH, Smith AB, Campbell AC (eds) Echinoderm research 1995. AA Balkema, Rotterdam, pp 129–135

    Google Scholar 

  • Westergren-Thorsson G, Norman M, Bjorrnsson S, Endresen U, Stjernholm Y, Ekman G, Malmstrom A (1998) Differential expressions of mRNA for proteoglycans, collagens and transforming growth factor-β in the human cervix during pregnancy and involution. Biochim Biophys Acta 1406:203–213

    PubMed  Google Scholar 

  • Wilkie IC (1979) The juxtaligamental cells of Ophiocomina nigra (Abildgaard) (Echinodermata: Ophiuroidea) and their possible role in mechano-effector function of collagenous tissue. Cell Tissue Res 197:515–530

    Article  PubMed  Google Scholar 

  • Wilkie IC (1988) Design for disaster: the ophiuroid intervertebral ligament as a typical mutable collagenous structure. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. AA Balkema, Rotterdam, pp 25–38

    Google Scholar 

  • Wilkie IC (1992) Variable tensility of the oral arm plate ligaments of the brittlestar Ophiura ophiura L. (Echinodermata: Ophiuroidea). J Zool Lond 228:5–26

    Google Scholar 

  • Wilkie IC (1996) Mutable collagenous tissues: extracellular matrix as mechano-effector. Echinoderm Stud 5:61–102

    Google Scholar 

  • Wilkie IC (2001) Autotomy as a prelude to regeneration in echinoderms. Microsc Res Tech 55:369–396

    Article  PubMed  Google Scholar 

  • Wilkie IC (2002) Is muscle involved in the mechanical adaptability of echinoderm mutable collagenous tissue? J Exp Biol 205:159–165

    PubMed  Google Scholar 

  • Wilkie IC, Emson RH (1987) The tendons of Ophiocomina nigra and their role in autotomy (Echinodermata, Ophiuroida). Zoomorphology 107:33–44

    Article  Google Scholar 

  • Wilkie IC, Candia Carnevali MD, Bonasoro F (1992) The compass depressors of Paracentrotus lividus (Lamarck) (Echinodermata, Echinoida): ultrastructural and mechanical aspects of their variable tensility and contractility. Zoomorphology 112:143–153

    Article  Google Scholar 

  • Wilkie IC, Candia Carnevali MD, Andrietti F (1993) Variable tensility of the peristomial membrane of the sea-urchin Paracentrotus lividus (Lamarck). Comp Biochem Physiol 105A:493–501

    Article  Google Scholar 

  • Wilkie IC, Candia Carnevali MD, Andrietti F (1994) Microarchitecture and mechanics of the sea-urchin peristomial membrane. Boll Zool 61:39–51

    Google Scholar 

  • Wilkie IC, Candia Carnevali MD, Bonasoro F (1998) Organization and mechanical behaviour of myocyte-ligament composites in a sea-urchin lantern: the compass depressors of Stylocidaris affinis. Zoomorphology 118:87–101

    Article  Google Scholar 

  • Wilkie IC, Candia Carnevali MD, Bonasoro F (1999) Evidence for the ‘cellular calcium regulation hypothesis’ from 'simple’ mutable collagenous structures: the brachial and cirral syzygial ligaments of Antedon mediterranea (Lam). In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. AA Balkema, Rotterdam, pp 119–125

    Google Scholar 

  • Wilkie IC, Candia Carnevali MD, Trotter JA (2004a) Mutable collagenous tissue: recent progress and an evolutionary perspective. In: Heinzeller T, Nebelsick J (eds) Proc 11th Int Echinoderm Conf, Munich 2003 (in press)

    Google Scholar 

  • Wilkie IC, McKew M, Candia Carnevali MD (2004b) Functional morphology of the compass-rotular ligament of Echinus esculentus (Echinodermata: Echinoida): a non-mutable collagenous component of Aristotle's lantern. Zoomorphology (in press)

    Google Scholar 

  • Wilkie IC, Bonasoro F, Bavestrello G, Cerrano C, Candia Carnevali MD (2004 c) Mechanical properties of the collagenous mesohyl of Chondrosia reniformis: evidence for physiological control. Boll Mus Istit Univ Genova (in press)

    Google Scholar 

  • Yoshida M, Sagawa N, Itoh H, Yura S, Takemura M, Wada Y, Sato T, Ito A, Fujii S (2002) Prostaglandin F2α, cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol Human Reprod 8:681–687

    Article  Google Scholar 

  • Young CM, Emson RH (1995) Rapid arm movements in stalked crinoids. Biol Bull 188:89–97

    Google Scholar 

  • Yu WH, Yu SC, Meng Q, Brew K, Woessner JF (2000) TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem 275:31226–31232

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilkie, I. (2005). Mutable Collagenous Tissue: Overview and Biotechnological Perspective. In: Matranga, V. (eds) Echinodermata. Progress in Molecular and Subcellular Biology, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27683-1_10

Download citation

Publish with us

Policies and ethics