Abstract
Nowadays, manufacturing industries — driven by fierce competition and rising customer requirements — are forced to produce a broader range of individual products of rising quality at the same (or preferably lower) cost. Meeting these demands implies an even more complex production process and thus also an appropriately increasing request to its scheduling. Aggravatingly, vagueness of scheduling parameters — such as times and conditions — are often inherent in the production process. In addition, the search for an optimal schedule normally leads to very difficult problems (NP-hard problems in the complexity theoretical sense), which cannot be solved efficiently.
With the intent to minimize these problems, the introduced heuristic method combines standard scheduling methods with fuzzy methods to get a nearly optimal schedule within an appropriate time considering vagueness adequately.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Adam, D. (1992): Retrograde Terminierung: Ein Verfahren zur Fertigungssteuerung bei diskontinuierlichem Materialfluss oder vernetzter Fertigung. In: Adam D. (ed): Fertigungssteuerung — Grundlagen und Systeme. Volume 38/39. Wiesbaden, pp 245–262.
Borgelt, C; Kruse, R. (2001): Unsicherheit und Vagheit: Begriffe, Methoden, Forschungsthemen. In: KI, Künstliche Intelligenz 3/01. Arendtap, Bremen, pp 18–24.
Brucker, P. (2001): Scheduling Algorithms. 3rd edn. Springer, Berlin Heidelberg New York.
Eiden, W.A. (2003): Prioritätengesteuertes Scheduling auf Basis eines multikriteriellen Fuzzy-Bewertungsverfahrens. Technical Report. Darmstadt University of Technology, Darmstadt.
Eiden, W.A. (2003): Flexibles Scheduling auf Basis von Fuzzy-Technologien. In: Geldermann, J.; Rommelfanger, H. (eds): Einsatz von Fuzzy-Sets, Neuronalen Netzen und Künstlicher Intelligenz in industrieller Produktion und Umweltforschung. Fortschritt-Berichte 10/725. VDI, Düsseldorf, pp 70–84.
Eiden, W.A. (2004): Job-Shop Scheduling under Vagueness. Euro XX-20th European Conference on Operational Research, Paper-ID: 1333. July 4–7, 2004, Rhodes, Greece.
Heitmann, C. (2002): Beurteilung der Bestandsfestigkeit von Unternehmen mit Neuro-Fuzzy. PhD Thesis. Peter Lang, Frankfurt am Main.
Nebl, T. (2002) Production Management: Oldenbourg, München Wien.
Rausch, P. (1999): HIPROFIT — Ein Konzept zur Unterstützung der hierarchischen Produktionsplanung mittels Fuzzy-Clusteranalysen und unscharfer LP-Tools. PhD Thesis. Peter Lang, Frankfurt am Main
Rommelfanger, H.; Eickemeier, S. (2002): Entscheidungstheorie — Klassische Konzepte und Fuzzy-Erweiterungen. Springer, Berlin Heidelberg.
Schwab, J. (1999): Logistisches Störungsmanagement. 44th International Scientific Colloquium. Technical University of Ilmenau, Ilmenau.
Sibbel, R. (1998): Fuzzy-Logik in der Fertigungssteuerung am Beispiel der retrograden Terminierung. LIT Verlag Dr. Wilhelm Hopf, Münster.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Eiden, W.A. (2005). Scheduling with Fuzzy Methods. In: Fleuren, H., den Hertog, D., Kort, P. (eds) Operations Research Proceedings 2004. Operations Research Proceedings, vol 2004. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27679-3_47
Download citation
DOI: https://doi.org/10.1007/3-540-27679-3_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-24274-1
Online ISBN: 978-3-540-27679-1
eBook Packages: Business and EconomicsBusiness and Management (R0)
