Skip to main content

Biological Nitrogen Fixation Associated with Angiosperms in Terrestrial Ecosystems

  • Chapter
Book cover Nutrient Acquisition by Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent. Science 248:477–480

    CAS  PubMed  Google Scholar 

  • Allen ON, Allen EK (1981) The Leguminosae: a source book of characteristics, uses and nodulation. University of Wisconsin Press, Madison

    Google Scholar 

  • Anonymous (1984) Casuarinas: nitrogen-fixing trees for adverse sites. National Academy Press, Washington

    Google Scholar 

  • Arahou M, Diem HG (1997) Iron deficiency induces cluster (proteoid) root formation in Casuarina glauca. Plant Soil 196:71–79

    Article  CAS  Google Scholar 

  • Becking J-H (1992) The Rhizobium symbiosis of the nonlegume Parasponia. In: Stacey G, Burris RH, Rvans HJ (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 497–559

    Google Scholar 

  • Benson DR, Clawson ML (2000) Evolution of actinorhizal plant symbiosis. In: Triplett EW (ed) Prokaryotic nitrogen fixation. Horizon, Wymondham, Norfolk, pp 207–224

    Google Scholar 

  • Benson DR, Silvester W (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed  Google Scholar 

  • Bergman B, Johansson C, Söderbäck E (1992) The Gunnera-Nostoc symbiosis. New Phytol 122:379–400

    Article  Google Scholar 

  • Boddey RM (1995) Biological nitrogen fixation in sugar cane: a key to energetically viable biofuel production. Crit Rev Plant Sci 6:209–266

    Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycling Agroecosyst 57:235–270

    Article  Google Scholar 

  • Bond G (1976) The results of the IBP survey of root-nodule formation in non-leguminous angiosperms. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, Cambridge, pp 443–474

    Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033

    CAS  PubMed  Google Scholar 

  • Burdon JJ, Gibson AH, Searle SD, Woods MJ, Brockwell J (1999) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian Acacia: within-species interactions. J Appl Ecol 36:398–408

    Article  Google Scholar 

  • Chen WM, James EK, Prescott AR, Kierans M, Sprent JI (2003) Nodulation of Mimosa spp. by the β-proteobacterium Ralstonia taiwanensis. Mol Plant-Microbe Interact 16:1051–1061

    CAS  PubMed  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis S, Latty EF, von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Cloutier J, Laberge S, Prévost D, Antoun H (1996) Sequence and mutational analysis of the common nodBCIJ region of Rhizobium sp. (Oxytropis arctobia) strain N33, a nitrogen-fixing microsymbiont of both arctic and temperate legumes. Mol Plant Microbe Interact 9:523–531

    CAS  PubMed  Google Scholar 

  • Corby HDL (1988) Types of rhizobial nodule and their distribution among the Leguminosae. Kirkia 13: 53–123

    Google Scholar 

  • Denison WC (1979) Lobaria oregana, a nitrogen-fixing lichen in old-growth Douglas fir forests. In: Gordon JC, Wheeler CT, Perry CT (eds) Symbiotic nitrogen fixation in the management of temperate forests. Forest Research Laboratory, Oregon State University, Corvallis, pp 266–275

    Google Scholar 

  • Diem HG, Dommergue YR (1990) Current and potential uses and management of Casuarinaceae in the tropics and sub-tropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, New York, pp 317–342

    Google Scholar 

  • Döbereiner J, Reis MV, Lazarina AC (1988) New N2 fixing bacteria in association with certain cereals and sugar cene. In: H Bothe, FJ de Bruijn, WE Newton (eds) Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart, pp 717–722

    Google Scholar 

  • Dong Z, Layzell DB (2001) H2 oxidation,O2 uptake and CO2 fixation in hydrogen treated soils. Plant Soil 229:1–12

    Article  CAS  Google Scholar 

  • Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E, Rodes R (1994) A nitrogen-fixing endophyte from sugarcane stems. Plant Physiol 105:1139–1147

    CAS  PubMed  Google Scholar 

  • Duhoux E, Rinaudo G, Diem HG, Auguy F, Fernandez D, Bogusz D, Franche C, Dommergues Y, Huguerin B (2001) Angiosperm Gymnostoma trees produce root nodules colonized by arbuscular mycorrhizal fungi related to Glomus. New Phytol 149:115–125

    Article  Google Scholar 

  • Fowler D, Sutton MA, Smith RI, Pitcairn CER, Coyle M, Campbell G, Stedman J (1998) Regional budgets of oxidised and reduced nitrogen and their relative contribution to the nitrogen inputs of sensitive ecosystems. Environ Pollut 102:337–342

    Article  CAS  Google Scholar 

  • Franco AA, Faria SM de (1997) The contribution of N fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29:897–903

    Article  CAS  Google Scholar 

  • Gadgil RL (1983) Biological nitrogen fixation in forestry — research and practice in Australia and New Zealand. In: Gordon JC, Wheeler CT (eds) Biological nitrogen fixation in forest ecosystems: foundations and applications. Dr. W. Junk, The Hague, pp 317–332

    Google Scholar 

  • Gordon JC, Wheeler CT (eds) (1983) Biological nitrogen fixation in forest ecosystems: foundations and applications. Dr.W. Junk, The Hague

    Google Scholar 

  • Gualtieri G, Bisseling T (2000) The evolution of nodulation. Plant Mol Biol 42:181–194

    Article  CAS  PubMed  Google Scholar 

  • Habit MA, Contreras D, González RH (1981) Prosopis tamarugo: fodder tree for arid zones. FAO, Rome

    Google Scholar 

  • Halliday J, Pate JS (1976) Symbiotic nitrogen fixation by coralloid roots of the cycad Macrozamia reidlei: physiological characteristics and ecological significance. Aust J Plant Physiol 3:349–358

    Article  CAS  Google Scholar 

  • Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol Evol Syst 1:92–120

    Article  Google Scholar 

  • Herbert RA, Tughan CS, de Wit R, van Gemerden H (1988) Development of laminated mat microbial ecosystems in temperate marine environments. In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, pp 105–111

    Google Scholar 

  • Hill RS, Scriven LJ (1995) The angiosperm-dominated woody vegetation of Antarctica: a review. Rev Palaeobot Palynol 86:175–198

    Article  Google Scholar 

  • Holmes PM, Cowling RM (1997) The effects of invasion by Acacia saligna on the guild structure and regeneration capabilities of South African fynbos. J Appl Ecol 34:317–332

    Google Scholar 

  • Hughes CE, Styles BT (1989) The benefits and risks of woody legume introductions. In: Stirton CH, Zarucchi JL (eds) Advances in legume biology. Monogr Syst Bot Mo Bot Gard 29:505–531

    Google Scholar 

  • Hurek T, Handley L, Reinhold-Hurek B, Piche Y (1998) Does Azoarcus sp fix nitrogen with monocots? In: Elmerich C, Kondorosi A, Newton WE (eds) Biological nitrogen fixation for the 21st century. Kluwer, Dordrecht, p 407

    Google Scholar 

  • Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  • Jacot KA, Lüscher A, Nösberger J, Hartwig UA (2000) Symbiotic N fixation of various legume species along an altitudinal gradient in the Swiss alps. Soil Biol Biochem 32:1043–1052

    Article  CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • James EK, Loureiro MF, Pott A, Pott VJ, Martins CM, Franco AA, Sprent JI (2001) Flooding-tolerant legume symbioses from the Brazilian Pantanal. New Phytol 150:723–738

    Article  Google Scholar 

  • Jarzen DM, Dettman ME (1989) Taxonomic revision of Tricolpites reticulates Cookson ex Cooper 1953 with notes on the biogeography of Gunnera. Pollen Spores 31:97–112

    Google Scholar 

  • Jones DL (1993) Cycads of the world. Smithsonian Institute Press, Washington

    Google Scholar 

  • Lavin M, Pennington RT, Klitgaard BB, Sprent JI, de Lima HC, Gasson PE (2001) The dalbergioid legume (Fabaceae): delimitation of a pantropical monophyletic clade. Am J Bot 88:503–533

    PubMed  Google Scholar 

  • Leigh JA (2000) Nitrogen fixation in methanogens — the archaeal perspective. In: Triplett EW (ed) Prokaryotic nitrogen fixation. Horizon, Wymondham, Norfolk, pp 657–669

    Google Scholar 

  • Lepper MG, Fleschner M (1977) Nitrogen fixation by Cercocarpus ledifolius (Rosaceae) in pioneer habitats. Oecologia 27:333–338

    Article  Google Scholar 

  • Loureiro MF, Faria SM de, James EK, Pott AA, Franco AA (1994) Nitrogen-fixing stem nodules of the legume, Discolobium pulchellum Benth. New Phytol 128:283–295

    Article  CAS  Google Scholar 

  • McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JI, McKey D (eds) Advances in legume systematics. Part 5. The nitrogen factor. Royal Botanic Gardens, Kew, pp 221–228

    Google Scholar 

  • Moore DM (1968) The vascular flora of the Falkland Islands. Sci Rep no 60, British Antarctic Survey, London

    Google Scholar 

  • Nash TH (1996) Nitrogen, its metabolism and potential contribution to ecosystems. In: Nash TH (ed) Lichen biology. Cambridge University Press, Cambridge, pp 121–135

    Google Scholar 

  • Okon Y, Labandera-Gonzales CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Osborne BA, Cullen A, Jones PW, Campbell GJ (1992) Use of nitrogen by the Nostoc-Gunnera tinctoria (Molina) Mirbel symbiosis. New Phytol 120:481–487

    Article  CAS  Google Scholar 

  • Parsons R, Silvester WB, Harris S, Gruijters WTM, Bullivant S (1987) Frankia vesicles provide inducible and absolute protection for nitrogenase. Plant Physiol 83:728–731

    CAS  PubMed  Google Scholar 

  • Pate JS, Dixon KW (1981) Plants with fleshy underground storage organs — a Western Australian survey. In: Pate JS, McComb AJ (eds) The biology of Australian plants. University of Western Australia Press, Nedlands, pp 181–215

    Google Scholar 

  • Peoples MB, Faizah AW, Rerkasen B Herridge DF (eds) (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. ACIAR, Canberra

    Google Scholar 

  • Pitcairn CER, Leith ID, Sheppard LJ, Sutton MA, Fowler D, Munro RC, Tang S, Wilson D (1998) The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environ Poll 102:41–48

    Article  CAS  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host-ranges. MPMI 12:293–318

    CAS  PubMed  Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  • Richardson AE, Simpson RJ, Djordjevic MA Rolfe BG. (1988) Expression of nodulation genes in Rhizobium leguminosarum bv. trifolii is affected by low pH, Ca and Al. Appl Environ Microbiol 54:2541–2548

    CAS  PubMed  Google Scholar 

  • Scherer S, Ernst SA, Chen T-W, Böger P (1984) Rewetting of drought-resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis, and nitrogen fixation. Oecologia 62:418–423

    Article  Google Scholar 

  • Schulman HM, Lewis MC, Tipping EM, Bordeleau LM (1988) Nitrogen fixation by three species of Leguminosae in the Canadian high Arctic tundra. Plant Cell Environ 11:721–728

    Article  CAS  Google Scholar 

  • Schwintzer CR, Tjepkema JD (eds) (1990) The biology of Frankia and actinorhizal plants. Academic Press, New York

    Google Scholar 

  • Sharma E (1993) Nutrient dynamics in Himalayan alder plantations. Ann Bot 72:329–336

    Article  CAS  Google Scholar 

  • Shrestha RK, Ladha JK (1996) Genotypic variation in promotion of rice nitrogen fixation as determined by 15N dilution. Soil Sci Am Soc J 60:1815–1821

    CAS  Google Scholar 

  • Silvester WB (1975) Ecological and economic significance of the non-legume symbioses. In: Newton WE, Nyman CJ (eds) Proc 1st Int Symp Nitrogen Fixation. Wiley, New York, pp 489–506

    Google Scholar 

  • Silvester WB (1977) Dinitrogen fixation by plant associations excluding legumes. In: Hardy RWF, Gibson AH (eds) A treatise on dinitrogen fixation, section IV. Wiley, New York, pp 141–189

    Google Scholar 

  • Silvester WB, Parsons R, Watt PW (1996) Direct measurement of release of ammonia in the Gunnera-Nostoc symbiosis. New Phytol 132: 617–625

    Article  CAS  Google Scholar 

  • Skene KR, Sprent JI, Raven JA, Herdman L (2000) Biological flora of the British Isles: Myrica gale. J Ecol 88:1079–1094

    Article  Google Scholar 

  • Skujins J, Nikkanen T, Hernriksson E (1987) Research note: responses of cyanobacterial growth and N2 fixation to textural components of soils. Arid Soil Restor Rehab 1:195–198

    Google Scholar 

  • Soltis DE, Soltis PS, Chase ME, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461

    Article  Google Scholar 

  • Spaink HP, Kondorosi A, Hooykaas PJJ (eds) (1998) The Rhizobiaceae — molecular biology of the model plant-associated bacteria. Kluwer, Dordrecht

    Google Scholar 

  • Sprent JI (1987) The ecology of the nitrogen cycle. Cambridge University Press, Cambridge

    Google Scholar 

  • Sprent JI (1989) Which steps are essential to the formation of functional legume nodules? New Phytol 111:129–153

    Article  Google Scholar 

  • Sprent JI (1993) The role of nitrogen fixation in primary succession on land. In: Miles J, Walton DWH (eds) Primary succession on land. British Ecological Society, Spec Publ 12, Blackwell, Oxford, pp 209–219

    Google Scholar 

  • Sprent JI (1994) Nitrogen acquisition systems in the Leguminosae. In: Sprent JI, McKey D (eds) Advances in legume systematics. Part 5. The nitrogen factor. Royal Botanic Gardens, Kew, pp 1–23

    Google Scholar 

  • Sprent JI (1999) Nitrogen fixation and growth of non-crop species in diverse environments. Perspect Plant Ecol Evol Syst 2:149–162

    Article  Google Scholar 

  • Sprent JI (2000) Nodulation as a taxonomic tool. In: Herendeen PS, Bruneau A (eds) Advances in legume systematics, part 9. Royal Botanic Gardens, Kew, pp 21–44

    Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic gardens, Kew

    Google Scholar 

  • Sprent JI, Raven JA (1985) Evolution of nitrogen fixing symbioses. Proc R Soc Edinb B 85:215–237

    Google Scholar 

  • Sprent JI, Sprent P (1990) Nitrogen fixing organisms: pure and applied aspects. Chapman and Hall, London

    Google Scholar 

  • Stock P, Silvester WB (1994) Phloem transport of recently fixed nitrogen in the Gunerra-Nostoc symbiosis. New Phytol 126:259–266

    Article  CAS  Google Scholar 

  • Stock WD, Wienand KT, Baker AC (1995) Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in 2 Cape ecosystems — evidence from soil incubation studies and 15N natural abundance values. Oecologia 101:375–382

    Article  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment Proc Natl Acad Sci USA 92:8985–8989

    CAS  PubMed  Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  Google Scholar 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen balance estimates. Soil Sci Soc Am J 56:105–114

    Article  Google Scholar 

  • Vande Broek A, Dobbelaere S, Vanderleyden J, Vandommelen A (2000) Azospirillumplant root interactions: signalling and metabolic interactions. In: Triplett EW (ed) Prokaryotic nitrogen fixation. Horizon, Wymondham, Norfolk, pp 761–777

    Google Scholar 

  • Vaneechoutte M, Kampfer P, De Baere T, Falsen E, Verschraegen G (2004) Wautersia gen. nov., a novel genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 54:317–327

    Article  PubMed  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica fayain Hawaii: plant demography, nitrogen fixation, and ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57/58:1–45

    Article  CAS  Google Scholar 

  • Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182

    CAS  PubMed  Google Scholar 

  • Winkler JB, Herbst M (2004) Do plants of a semi-natural grassland community benefit from long-term CO2 enrichment? Basic and Applied Ecology 5:131–143

    Article  Google Scholar 

  • Wynne-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075

    Article  Google Scholar 

  • Wynne-Williams DD, Edwards HGM, Garcia-Pichel F (1999) Functional biomolecules of Antarctic stromatolite and endolithic cyanobacterial communities. Eur J Phycol 34:381–391

    Article  Google Scholar 

  • Young JPW (1992) Phylogenetic classification of nitrogen-fixing organisms. In: Stacey G, Evans HJ, Burris RH (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 43–86

    Google Scholar 

  • Young JM, Kuykendall LD, MartÍnez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998, R. rhizogenes, R. rubri, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sprent, J. (2005). Biological Nitrogen Fixation Associated with Angiosperms in Terrestrial Ecosystems. In: BassiriRad, H. (eds) Nutrient Acquisition by Plants. Ecological Studies, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27675-0_5

Download citation

Publish with us

Policies and ethics