Skip to main content

Soil Factors Affecting Nutrient Bioavailability

  • Chapter
Book cover Nutrient Acquisition by Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • Barber SA, Cushman JH (1981) Nutrient uptake model for agronomic crops. In: Iskander IK (ed) Modelling wastewater renovation land treatment. Wiley, New York, pp 382–409

    Google Scholar 

  • Barros Filho NF, Comerford NB, Barros NF (2004) Phosphorus sorption, desorption and resorption in soils of the Brazilian Cerrado. Biomass Bioenergy (in press)

    Google Scholar 

  • Bar-Tal A, Bar-Yosef B, Chen Y (1991) Validation of a model of the transport of zinc to an artificial root. J Soil Sci 42:399–411

    CAS  Google Scholar 

  • Bhadoria PBS, Kaselowsky J, Claassen N, Jungk A (1991) Impedance factor for chloride diffusion in soil as affected by bulk-density and water-content. Z Pflanzenernähr Bodenkd 154:69–72

    CAS  Google Scholar 

  • Bhatti JS, Comerford NB (2002) Measurement of phosphorus desorption from a spodic horizon using two different desorption methods and pH control. Comm Soil Sci Plant Anal 33:845–853

    Article  CAS  Google Scholar 

  • Bouldin DR (1989) A multiple ion uptake model. J Soil Sci 40:309–319

    CAS  Google Scholar 

  • Brewster JL, Gancheva AN, Nye PH (1975) Determination of desorption isotherms for soil phosphate using low volumes of solution and an anion exchange resin. J Soil Sci 26:364–377

    CAS  Google Scholar 

  • Buckley TN, Miller JM, Farquhar GD (2002) The mathematics of linked optimisation for water and nitrogen use in a canopy. Silva Fennica 36:639–669

    Google Scholar 

  • Colombo C, Barron V, Torrent J (1994) Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochim Cosmochim Acta 58:1261–1269

    Article  CAS  Google Scholar 

  • Comerford NB (1998) Soil P bioavailability. In: Lynch JP, Deikman J (eds) Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. American Society of Plant Physiologists, Rockville, Maryland

    Google Scholar 

  • Comerford NB, Harris WG, Lucas D (1990) Release of non-exchangeable potassium from a highly-weathered, forested quartzipsamment. Soil Sci Soc Am J 54:1421–1426

    Article  Google Scholar 

  • De Willigen P, van Noordwijk M (1994a) Diffusion and mass flow to a root with constant nutrient demand or behaving as a zero-sink. 1. Constant uptake. Soil Sci 157:162–170

    Google Scholar 

  • De Willigen P, van Noordwijk M (1994b) Diffusion and mass flow to a root with constant nutrient demand or behaving as a zero sink. 2. Zero sink. Soil Sci 157:171–175

    Google Scholar 

  • Fox TR, Comerford NB, McFee WW (1990) Phosphorus and aluminum release from spodic horizon mediated by organic acids. Soil Sci Soc Am J 54:1763–1767

    CAS  Google Scholar 

  • Gherardi MJ, Rengel Z (2004) The effect of manganese supply on exudation of carboxylates by roots of lucerne (Medicago sativa). Plant Soil 260:271–282

    Article  CAS  Google Scholar 

  • Grierson PF, Smithson P, Nzigulheba G, Radersma S, Comerford NB (2004) Phosphorus dynamics and mobilization by plants. In: van Norodwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems: concepts and models with multiple plant components. World Agroforestry Centre (ICRAF), Nairobi, Kenya, pp 127–142

    Google Scholar 

  • Guzel N, Buyuk G, Ibrikci K (2001) Non-exchangeable and exchangeable potassium status of soils in relation to clay mineralogy and other soil properties in Hilvan area of upper Mesopotamia in southeastern Anatolia. Commun Soil Sci Plant Anal 32:2887–2892

    Google Scholar 

  • Harris WG, Wang HD, Reddy KR (1994) Dairy manure influence on soil and sediment composition — implications for phosphorus retention. J Environ Qual 23:1071–1081

    Article  Google Scholar 

  • Harris WG, Rhue RD, Kidder G, Brown RB, Littell R (1996) Phosphorus retention as related to morphology of sandy coastal plain soil materials. Soil Sci Soc Am J 60:1513–1521

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hoffland E (1992) Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape. Plant Soil 140:279–289

    CAS  Google Scholar 

  • Joner EJ, Jakobsen I (1994) Contribution by 2 arbuscular mycorrhizal fungi to P-uptake by cucumber (Cucumis sativus L.) from P32 labeled organic matter during mineralization in soil. Plant Soil 163:203–209

    Article  CAS  Google Scholar 

  • Kamh M, Abdou M, Chude V, Wiesler F, Horst WJ (2002) Mobilization of phosphorus contributes to positive rotational effects of leguminous cover crops on maize grown on soils from northern Nigeria. J Plant Nutr Soil Sci 165:566–572

    Article  CAS  Google Scholar 

  • Kirk GJD, Solivas JL, Alberto MC (2003) Effects of flooding and redox conditions on solute diffusion in soil. Eur J Soil Sci 54:617–624

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Koopmans GF, Chardon WJ, de Willigen P, van Riemsdijk WH (2004) Phosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability. J Environ Qual 33:1393–1402

    CAS  PubMed  Google Scholar 

  • Lan M, Comerford NB, Fox TR (1995) Organic anions’ effect on phosphorus release from spodic horizons. Soil Sci Soc Am J 59:1745–1749

    Article  CAS  Google Scholar 

  • Lewis DR, McGechan MB (2002) A review of field scale phosphorus dynamics models. Biosyst Eng 82:359–380

    Article  Google Scholar 

  • Liu Y, Mi GH, Chen FJ, Zhang JH, Zhang FS (2004) Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Sci 167:217–223

    Article  CAS  Google Scholar 

  • Loosemore N, Straczek A, Hinsinger P, Jaillard B (2004) Zinc mobilization from a contaminated soil by three genotypes of tobacco as affected by soil and rhizosphere pH. Plant Soil 260:19–32

    Article  CAS  Google Scholar 

  • McCluskey J, Herdman L, Skene KR (2004) Iron deficiency induces changes in metabolism of citrate in lateral roots and cluster roots of Lupinus albus. Physiol Plant 121:586–594

    Article  CAS  Google Scholar 

  • McDowell R, Condron L (2001) Influence of soil constituents on soil phosphorus sorption and desorption. Comm Soil Sci Plant Anal 32:2531–2547

    Article  CAS  Google Scholar 

  • Nakamara Y, Nanzyo M, Yamasaki S (2000) Utilization of apatite in fresh volcanic ash by pigeonpea and chickpea. Soil Sci Plant Nutr 46:591–600

    Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system, Studies in ecology, vol 4. University of California Press, Berkeley

    Google Scholar 

  • Peaslee EE, Phillips RE (1981) Phosphorus dissolution-desorption in relation to bioavailability and environmental pollution. In: Stelly M, Dowdy RH, Ryan JA, Volk VV, Baker DE (eds) Chemistry in the soil environment. Am Soc Agron Spec Publ 40:241–259

    Google Scholar 

  • Radersma S, Griereson PF (2004) Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil 259:209–219

    Article  CAS  Google Scholar 

  • Raven KP, Hossner LR (1994) Sorption and desorption quantity-intensity parameters related to plant available soil phosphorus. Soil Sci Soc Am J 58:405–410

    Google Scholar 

  • Rengel Z (1993) Mechanistic simulation models of nutrient uptake — a review. Plant Soil 152:161–173

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exclusion from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Tang C, Rengel Z, Zhang F (2004) Root-induced acidification and excess cation uptake by N2-fixing Lupinus albus grown in phosphorus-deficient soil. Plant Soil 260:69–77

    Article  CAS  Google Scholar 

  • Silberbush M, Sorek S, Yakirevich A (1993) K+ uptake by root systems grown in soils under salinity. I.A mathematical model. Transport Porous Media 11:101–116

    Article  CAS  Google Scholar 

  • Singh BB, Jones JP (1976) Phosphorus sorption and desorption characteristics of soil as affected by organic residues. Soil Sci Soc Am J 40:389–394

    Article  CAS  Google Scholar 

  • Smethurst PJ, Comerford NB (1993a) Simulating nutrient uptake by single or competing and contrasting root systems. Soil Sci Soc Am J 57:1361–1367

    CAS  Google Scholar 

  • Smethurst PJ, Comerford NB (1993b) Potassium and phosphorus uptake by competing pine and grass: observations and model verification. Soil Sci Soc Am J 57:1602–1610

    Google Scholar 

  • Soil Science Society of America (1996) Glossary of soil science terms. Soil Science Society of America, Madison, Wisconsin

    Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

    Google Scholar 

  • Uhde-Stone C, Gilbert G, Johnson JMF, Litjens R, Zinn KE, Temple SJ, Vance CP, Allan DL (2003) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248:99–116

    Article  CAS  Google Scholar 

  • Van Rees KCJ, Comerford NB, Rao PSC (1990a) Defining soil buffer power: implications for ion diffusion and nutrient uptake modeling. Soil Sci Soc Am J 54:1505–1507

    Google Scholar 

  • Van Rees KCJ, Comerford NB, McFee WW (1990b) Modeling potassium uptake by slash pine seedlings from low potassium supplying soils of the southeastern coastal plain. Soil Sci Soc Am J 54:1413–1421

    Article  Google Scholar 

  • Veneklaas EJ, Stevens J, Cawthray GR, Turner S, Grigg AM, Lambers H (2003) Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake. Plant Soil 248:187–197

    Article  CAS  Google Scholar 

  • Weinstein DA, Yanai RD (1994) Integrating the effects of simultaneous multiple stresses on plants using the simulation model TREGRO. J Environ Qual 23:418–428

    Article  Google Scholar 

  • Williams M, Yanai RD (1996) Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model. Plant Soil 180:311–324

    Article  CAS  Google Scholar 

  • Wouterlood M, Cawthray GR, Turner S, Lamberes H, Veneklaas EJ (2004) Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type. Plant Soil 261:1–10

    Article  CAS  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2003) Least-cost input mixtures of water and nitrogen for photosynthesis. Am Nat 161:98–111

    Article  PubMed  Google Scholar 

  • Yanai RD (1994) A steady-state model of nutrient uptake accounting for newly grown roots. Soil Sci Soc Am J 58:1562–1571

    Article  Google Scholar 

  • Zhang XG, Jessop RS, Alter D (2003) Organic acid exudation associated with aluminium stress tolerance in triticale and wheat. Aust J Agric Res 54:979–985

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Comerford, N. (2005). Soil Factors Affecting Nutrient Bioavailability. In: BassiriRad, H. (eds) Nutrient Acquisition by Plants. Ecological Studies, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27675-0_1

Download citation

Publish with us

Policies and ethics