Deep-water corals of the northeastern Atlantic margin: carbonate mound evolution and upper intermediate water ventilation during the Holocene

  • Norbert Frank
  • Audrey Lutringer
  • Martine Paterne
  • Dominique Blamart
  • Jean-Pierre Henriet
  • David van Rooij
  • Tjeerd C. E. van Weering
Part of the Erlangen Earth Conference Series book series (ERLANGEN)


We present combined 230Th/U and 14C dating on deep-water corals from the northeastern North Atlantic in order to investigate coral growth and sedimentation on carbonate mounds, as well as past changes of intermediate water ventilation. Within European projects GEOMOUND and ECOMOUND reef forming Lophelia pertusa deep-water corals were raised from intermediate depth (∼610 to 888 m bsl) from top of carbonate mounds at southeast Rockall Bank and at Porcupine Seabight. XRD analyses, δ234U, and 230Th/232Th indicate negligible alteration of the investigated corals, i.e. open system U-series behavior. 230Th/U ages from coral specimens of the uppermost coral sequence of the investigated mounds range from today to 10,950 CAL yr BP, i.e. coral growth during the Holocene. A modern Lophelia gave a 230Th/U age of 1983±6 AD, close to the date of collection in 2001 AD. Deep-water coral growth is the driving process of sediment accumulation on the summit of carbonate mounds, with sediment accumulation rates in the order of ∼0.3 mm yr−1. However, coral growth is discontinuous and irregular, and complete coral sequences are frequently altered (dissolved) likely due to organic matter consumption by oxidizing pore fluids. Mound top sediments indicate the presence of corals over several glacial/interglacial cycles, but corals of glacial origin could not be identified on the investigated mounds.

Upper intermediate water Δ14C and reservoir ages (R) were reconstructed on 11 deep-water corals. Δ14C of −13±7 ‰ obtained on the coral dated to 1983 AD shows a significant lower value than the ones previously reported for the late 90’s (+27 ‰), but in agreement with seawater measurements performed in the early 80’s. Between 10,950 CAL yr BP and 420 CAL yr BP, R exhibit variations between as low as 240±110 yrs (at 5,440 CAL yr BP) to up to 750±230 yrs (at 10,450 CAL yr BP). However, most of the data (8 out of 10 corals) yield R between 400 and 600 yrs similar to previously reported pre-anthropogenic R values. Thus, the overall hydrographical pattern and surface to intermediate water CO2 exchange in the eastern North Atlantic was similar to the present day one.


Deep-water corals carbonate mounds Northeast Atlantic Rockall-Bank Porcupine Seabight 230Th/U dating 14C Dating ocean ventilation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins JF, Cheng H, Boyle EA, Druffel ERM, Edwards RL (1998) Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280: 725–728CrossRefGoogle Scholar
  2. Arnold M, Bard E, Maurice P, Valladas H, Duplessy J-C (1989) 14C dating with the Gifsur-Yvette tandetron accelerator: status report and study of isotopic fractionation in the sputter ion source. Radiocarbon 31: 284–291Google Scholar
  3. Bard E, Arnold M, Mangerud J, Paterne M, Labeyrie L, Duprat J, Mélières M-A, Sonstegaard E, Duplessy J-C (1994) The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth Planet Sci Lett 126: 275–287CrossRefGoogle Scholar
  4. Bard E, Arnold M, Hamelin B, Tisnerat-Laborde N, Cabioch G (1998) Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Thahiti. Radiocarbon 40: 1085–1092Google Scholar
  5. Chen JH, Edwards RL, Wasserburg GJ (1986) 238U, 234U and 232Th in seawater. Earth Planet Sci Lett 80: 241–251CrossRefGoogle Scholar
  6. Cheng H, Adkins JF, Edwards RL, Boyle EA (2000a) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64: 2401–2416CrossRefGoogle Scholar
  7. Cheng H, Edwards RL, Hoff J, Gallup CD, Richards DA, Asmeron Y (2000b) The half-lives of uranium-234 and thorium-230. Chem Geol 169: 17–33CrossRefGoogle Scholar
  8. De Mol B, van Rensbergen P, Pillen S, van Herreweghe K, van Rooji D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin southeast of Ireland. Mar Geol 188: 193–231Google Scholar
  9. Delanghe D, Bard E, Hamelin B (2002) New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea. Mar Chem 80: 79–93CrossRefGoogle Scholar
  10. Dickson B, Brown J (1994) The production of North Atlantic deep water: sources, rates, and pathways. J Geophys Res 99: 12319–12341CrossRefGoogle Scholar
  11. Druffel ERM, Linick TW (1978) Radiocarbon in annual banded coral rings of Florida. Geophys Res Lett 5: 913–916Google Scholar
  12. Ellett DJ, Martin JHA (1973) The physical and chemical oceanography of the Rockall Channel. Deep-Sea Res 20: 585–625Google Scholar
  13. Frank N, Paterne M, Ayliffe LK, Blamart D, van Weering T, Henriet JP (2004) Eastern North Atlantic deep-sea corals: tracing upper intermediate water Δ14C during the Holocene. Earth Planet Sci Lett 219: 297–309CrossRefGoogle Scholar
  14. Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean Margin Systems. Springer, Berlin Heidelberg, pp 365–385Google Scholar
  15. Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund West Finnmark, northern Norway. SEPM Spec Publ56: 141–162Google Scholar
  16. Goldstein SJ, Lea DW, Charaborty S, Kasharian M, Murrell MT (2001) Uranium-series and radiocarbon geochronology of deep-sea corals: implications for Southern Ocean ventilation rates and oceanic carbon cycle. Earth Planet Sci Lett 193: 167–182CrossRefGoogle Scholar
  17. Henriet JP, De Mol B, Pillen S, Vanneste M, van Rooji D, Versteeg W, Croker PF (1998) Gas hydrate crystals may help build reefs. Nature 391: 648–649CrossRefGoogle Scholar
  18. Holliday NP, Pollard RT, Read JF, Leach H (2000) Water mass properties and fluxes in the Rockall Trough 1975–1998. Deep-Sea Res I 47: 1303–1332Google Scholar
  19. Hughen KA, Overpeck JT, Lehman JS, Kashgarian M, Southon J, Peterson LC, Alley R, Sigman DM (1998) Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391: 65–68CrossRefGoogle Scholar
  20. Hughen KA, Southon J, Lehman S, Overpeck JT (2000) Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290: 1951–1954CrossRefGoogle Scholar
  21. Kalis AJ, Merkt J, Wunderlich J (2003) Environmental changes during the Holocene climate optimum in central Europe-human impact and natural causes. Quaternary Sci Rev 22: 33–79CrossRefGoogle Scholar
  22. Levin I, Bösinger R, Bonani G, Francey R, Kromer B, Münnich KO, Suter M, Trivett NBA, Wölfli W (1992) Radiocarbon in atmospheric carbon dioxide and methane: global distribution and trends. In: Taylor RE, Long A, Kra R (eds) Radiocarbon after four Decades: an interdiscipilanry Perspective. Springer, New York, pp 503–518Google Scholar
  23. Lomitschka M, Mangini A (1999) Precise Th/U-dating of small and heavily coated samples of deep-sea corals. Earth Planet Sci Lett 170: 391–401CrossRefGoogle Scholar
  24. Ludwig KR (2001) ISOPLOT 2.49. Berkeley Geochronolog Cent Spec Publ 1a, 58Google Scholar
  25. Ludwig KR, Simmons KR, Szabo BJ, Winograd IJ, Landwehr JM, Riggs AC, Hoffman RJ (1992) Mass-spectrometric 230Th-234U-238U dating of the Devils Hole calcite vein. Science 258: 284–287Google Scholar
  26. Mangini A, Lomitschka M, Eichstädter R, Frank N, Vogler S, Bonani G, Hajdas I, Pätzold J (1998) Coral provides way to age deep water. Nature 392: 347CrossRefGoogle Scholar
  27. Moran SB, Hoff JA, Buesseler KO, Edwards RL (1995) High precision 230Th and 232Th in the Norwegian Sea and Denmark by thermal ionization mass spectrometry. Geophys Res Lett 22: 2589–2592CrossRefGoogle Scholar
  28. New AL, Smythe-Wright D (2001) Aspects of the circulation in the Rockall Trough. Cont Shelf Res 21: 777–810CrossRefGoogle Scholar
  29. Nydal R, Gislefoss JS (1996) Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon 38: 389–406Google Scholar
  30. Robinson LF, Belshaw NS, Henderson GM (2004) U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas. Geochim Cosmochim Acta 68: 1777–1789CrossRefGoogle Scholar
  31. Rüggeberg A, Dorschel B, Dullo W-Chr, Hebbeln D (2005) Sedimentary patterns in the vicinity of a carbonate mounds in the Hovland Mound Province, northern Porcupine Seabight. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 87–112Google Scholar
  32. Schröder-Ritzrau A, Mangini A, Lomitschka M (2003) Deep-sea corals evidence periodic reduced ventilation in the North Atlantic during the LGM/Holocene transition. Earth Planet Sci Lett 216: 399–410Google Scholar
  33. Schröder-Ritzrau A, Mangini A, Freiwald A (2005) U/Th-dating of deep-water corals from the Eastern North Atlantic and the Mediterranean Sea. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 157–172Google Scholar
  34. Shen GT, Dunbar RB (1995) Environmental controls on uranium in reef corals. Geochim Cosmochim Acta 59: 2009–2024CrossRefGoogle Scholar
  35. Siani G, Paterne M, Arnold M, Bard E, Métivier B, Tisnerat N, Bassinot F (2000) Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42: 271–280Google Scholar
  36. Siani G, Paterne M, Michel E, Sulpizio R, Sbrana A, Arnold M, Haddad G (2001) Mediterranean sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294: 1917–1920CrossRefGoogle Scholar
  37. Smith JE, Risk MJ, Schwarcz HP, McConnaughey TA (1997) Rapid climate change in the North Atlantic during the Younger Dryas recorded by deep-sea corals. Nature 386: 818–820CrossRefGoogle Scholar
  38. Stuiver M, Polach H (1977) Discussion: Reporting of 14C data. Radiocarbon 19: 355–363Google Scholar
  39. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) Intcal98 radiocarbon age calibration: 24,000-0 cal BP. Radiocarbon 40: 1041–1083Google Scholar
  40. Thompson WG, Spiegelman MW, Goldstein SL, Speed RC (2003) An open-system model for U-series age determinations of fossil corals. Earth Planet Sci Lett 210: 365–381CrossRefGoogle Scholar
  41. Van Rooji D, Blamart D, Unnithan V (2001) Cruise-report MD123 Geosciences: Leg 2, part GEOMOUND. Porcupine Basin and Rockall Trough, off western Ireland, pp. 67Google Scholar
  42. Van Weering T, Shipboard Scientific Party (1998) Shipboard report RV Pelagia, Cruise 64/124 Leg 2, A survey of the SE Rockall Trough and Porcupine margin. NIOZ, Texel, 26 ppGoogle Scholar
  43. Van Weering T, Shipboard Scientific Party (1999) Shipboard cruise report RV Pelagia 64PE143: A survey of carbonate mud mounds of Porcupine Bight and S. Rockall Trough margins. NIOZ, Texel, 82 ppGoogle Scholar
  44. Villemant B, Feuillet N (2003) Dating open systems by the 238U-234U-230Th method: application to Quaternary reef terraces. Earth Planet Sci Lett 210: 105–118CrossRefGoogle Scholar
  45. Vogler S, Scholten J, van der Loeff MR, Mangini A (1998) 230Th in the eastern North Atlantic: the importance of water mass ventilation in the balance of 230Th. Earth Planet Sci Lett 156: 61–74CrossRefGoogle Scholar
  46. White M, Mohn C, de Stigter H, Mottram G (2005) Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin Heidelberg, pp 503–514Google Scholar
  47. Wilson JB (1979) ‘Patch’ development of the deep-water coral Lophelia pertusa (L.) on Rockall Bank. J Mar Biol Ass UK 59: 165–177Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Norbert Frank
    • 1
  • Audrey Lutringer
    • 1
  • Martine Paterne
    • 1
  • Dominique Blamart
    • 1
  • Jean-Pierre Henriet
    • 2
  • David van Rooij
    • 2
  • Tjeerd C. E. van Weering
    • 3
  1. 1.Laboratoire des Sciences du Climat et de l’Environnement (LSCE) Unité mixte de Recherche CEA-CNRSGif-sur- Yvette CedexFrance
  2. 2.Renard Centre of Marine GeologyGent UniversityGentBelgium
  3. 3.Koninklijk Nederlands Instituut voor Onderzoek der Zee (NIOZ)Den Burg, TexelThe Netherlands

Personalised recommendations