Skip to main content

The Extracellular Matrix During Normal Development and Neoplastic Growth

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 40))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie M, Heaysman J, Pegrum SM (1971) The locomotion of fibroblasts in culture. Exp Cell Res 65:359–367

    Article  PubMed  Google Scholar 

  • Bader BL, Rayburn H, Crowley D, Hynes RO (1998) Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95:507–519

    Article  PubMed  Google Scholar 

  • Barlati S, Adamoli A, de Petro G(1986) Presence and role of fibronectin fragments in transformed cells. In: Labat-Robert J, Timpl R, Robert L (eds) Front matrix biology, vol 11. Karger, Basel, pp 174–182

    Google Scholar 

  • Barrett AJ, Rawlings ND, Woessner JF (eds) (1998) Handbook of proteolytic enzymes. Academic Press, San Diego

    Google Scholar 

  • Bax DV, Messen AJ, Tart J, van Hoang M, Kott J, Maciewicz RA, Humphries MJ (2004) Integrin α5β1 and ADAM-17 interact in vitro and co-localize in migrating HeLa cells. J Biol Chem 279:22377–22386

    Article  PubMed  Google Scholar 

  • Beauvais A, Erickson CA, Goins T, Craig SE, Humphries MJ, Thiery JP, Dufour S (1995) Changes in the fibronectin-specific integrin expression pattern modify the migratory behavior of sarcoma S180 cells in vitro and in embryonic development. J Cell Biol 128:699–713

    Article  PubMed  Google Scholar 

  • Bell PB (1977) Locomotory behavior, contact inhibition and pattern formation of 3T3 and polyoúa virus-transformed 3T3 cells in culture. J Cell Biol 74:963–982

    Article  PubMed  Google Scholar 

  • Bernfield M, Banerjee SD, Koda J, Rapraeger A (1984) Remodeling of the basement membrane: morphogenesis and maturation. CIBA Found Symp 108:179–196

    PubMed  Google Scholar 

  • Bernston ED, Ramos DM, Kramer RH (1994) Metastatic melanoma cells interact with the reticular fibers of the lymph node. Melanoma Res 4:115–125

    PubMed  Google Scholar 

  • Birembaut P, Adnet JJ, Labat-Robert J, Mercantini F, Robert L (1981) Fibronectin in breast cancer. In: Hollman KH, de Brux J, Werley JM (eds) New frontiers in mammary pathology, vol II. Plenum Press, London, pp 175–184

    Google Scholar 

  • Bix G, Fu J, Gonzales EM, Macro L, Barker A, Campbell S, Zutter MM, Santoro SA, Kim JK, Höök M, Reed CC, Iozzo RV (2004) Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through α2β1 integrin. J Cell Biol 166:97–109

    Article  PubMed  Google Scholar 

  • Blood CH, Zetter BR (1999) Membrane-bound PKC modulates receptor affinity and chemotactic responsiveness of Lewis lung carcinoma sublines to an elastin-derived peptide. J Biol Chem 264:10614–10620

    Google Scholar 

  • Blumberg PM, Driedger PE, Rossow PW (1976) Effect of a phorbol ester on a transformation-sensitive surface protein of chick fibroblasts. Nature 264:446–447

    Article  PubMed  Google Scholar 

  • Bradshaw RA, Dennis EA (2004) Handbook of cell signaling, vol I. Academic Press, New York

    Google Scholar 

  • Colige A, Nusgens B, Lapière CM (1988) Effect of EGF on human skin fibroblasts is modulated by the extracellular matrix. Arch Dermatol Res 280[Suppl]:S42–S46

    PubMed  Google Scholar 

  • Colige A, Nusgens B, Lapière CM (1990) Response to epidermal Growth Factor of skin fibroblasts from donors of varying age is modulated by the extracellular matrix. J Cell Physiol 145:450–457

    Article  PubMed  Google Scholar 

  • Comper WD (ed) (1996) Extracellular matrix, vols 1–2. Harwood Academic Publ, Australia

    Google Scholar 

  • Davies GE, Bayless KJ, Davis MJ, Leininger GA (2000) Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol 156:1489–1498

    PubMed  Google Scholar 

  • DiPersio CM, Shao M, Di Costanzo L, Kreidberg JA, Hynes RO (2000) Mouse keratinocytes immortalized with large T antigen acquire alpha3beta1 integrin-dependent secretion of MMP-9/gelatinase. Br J Cell Sci 113:2909–2921

    Google Scholar 

  • Eble JA, Kuhn K (1997) Integrin-ligand interactions. Springer-Landes, New York, Austin

    Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer 2:163–176

    Article  Google Scholar 

  • Ekblom P, Timpl R (eds) (1996) The laminins. Harwood Academic, Amsterdam

    Google Scholar 

  • Ekblom P, Durbeej M, Ekblom M. (1996) Laminin isoforms in development. In: Ekblom P, Timpl R (eds) The laminins. Harwood Academic, Amsterdam, pp 185–216

    Google Scholar 

  • Ekblom M, Klein G, Mugrauer G, Fecker L, Deutzmann R, Timpl R, Ekblom P (1990) Transient and locally restricted expression of laminin A chain mRNA by developing epithelial cells during kidney organogenesis. Cell 60:337–346

    Article  PubMed  Google Scholar 

  • Elkin M, Cohen I, Zcharia E, Orgel A, Guatta-Rangini A, Peretz T, Voldavsky I, Kleinma, HK (2003) Regulation of heparanase gene expression by estrogen in breast cancer. Cancer Res 63:8821–8826

    PubMed  Google Scholar 

  • Emod I, Lafaye P, Planchenault T, Lambert Vidmar S, Imhoff JM, Keil-Dlouha V (1990) Potential proteolytic activity of fibronectin: fibronectin laminase and its substrate specificity. Biol Chem Hoppe-Seyler 371:129–135

    PubMed  Google Scholar 

  • Faury G, Ristori MT, Verdetti J, Jacob MP, Robert L (1995) Effect of elastin peptides on vascular tone. J Vasc Res 32:112–119

    PubMed  Google Scholar 

  • Faury G, Chabaud A, Ristori MT, Robert L, Verdetti J (1997) Effect of age on the vasodilatory action of elastin peptides. Mech Age Dev 95:31–42

    Article  Google Scholar 

  • Faury G, Usson Y, Robert-Nicoud M, Robert L, Verdetti J (1998) Nuclear and cytoplasmic free calcium level changes induced by elastin peptides in human endothelial cells. Proc Natl Acad Sci USA 95:2967–2972

    Article  PubMed  Google Scholar 

  • Fujiwara H, Kikkawa Y, Sanzen N, Sekiguchi K (2001) Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through α3β1 and α6β1 integrins. J Biol Chem 276:17550–17558

    Article  PubMed  Google Scholar 

  • Fülöp T, Larbi A (2002) Putative role of 67 kDa elastin-laminin receptor in tumor invasion. Semin Cancer Biol 12:219–229

    Article  PubMed  Google Scholar 

  • Fülöp T, Jacob MP, Khalil A, Wallach J, Robert L (1998) Biological effects of elastin peptides. Pathol Biol 46:497–506

    PubMed  Google Scholar 

  • Gahmberg CG, Hakomori SI (1973) Altered growth behavior of malignant cells associated with changes in externally labelled glycoprotein and glycolipid. Proc Natl Acad Sci USA 70:3329–3333

    PubMed  Google Scholar 

  • Goldschmidt O, Zcharia E, Abramovitch R, Metzger S, Aingorn H, Friedmann Y, Schirmacher V, Mitrani E, Vlodavsky I (2002) Cell surface expression and secretion of heparanase markedly promote tumor angiogenesis and metastasis. Proc Natl Acad Sci USA 99:10031–10036

    Article  PubMed  Google Scholar 

  • Goldschmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, Nadav L, Katz BZ, Geiger B, Vlodavsky I (2003) Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J 17:1015–1025

    Article  PubMed  Google Scholar 

  • Grant DS, Yenisey C, Wesley Rose R, Tootell M, Santra M, Iozzo RV (2002) Decorin suppresses tumor-cell-mediated angiogenesis. Oncogene 21:4765–4777

    Article  PubMed  Google Scholar 

  • Grobstein C (1953) Epithelio-mesenchymal specificity in the morphogenesis of mouse submandibular rudiments in vitro. J Exp Zool 124:383–413

    Article  Google Scholar 

  • Grobstein C (1956) Inductive tissue interactions in development. Adv Cancer Res 4:187–236

    PubMed  Google Scholar 

  • Grobstein C (1967) Mechanism of organogenetic tissue interaction. Natl Cancer Inst Monogr 26:279–299

    PubMed  Google Scholar 

  • Gross J, Lapière CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 48:1014–1022

    PubMed  Google Scholar 

  • Groult V, Hornebeck W. Robert L, Pouchelet M, Jacob MP (1998) Interactions of elastin fibers with fibroblasts — a time-lapse cinemicrographic study. Pathol Biol 46:507–516

    PubMed  Google Scholar 

  • Gullberg D, Ekblom P (1997) Integrins during development. In: Eble JA, Kühn K (eds) Integrin-ligand interaction. Springer, Berlin Heidelberg New York, pp 253–267

    Google Scholar 

  • Haack H, Hynes RO (2001) Integrin receptors are required for cell survival and proliferation during development of the peripheral glial lineage. Dev Biol 233:38–55

    Article  PubMed  Google Scholar 

  • Hascall V (ed) (1986) Functions of the proteoglycans. Wiley, Chichester

    Google Scholar 

  • Honn KV, Tang DG, Chen YQ (1992) Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Hemost 18:392–415

    PubMed  Google Scholar 

  • Hornebeck W, Tixier JM, Robert L (1986) Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin. Proc Natl Acad Sci USA 83:5517–5520

    PubMed  Google Scholar 

  • Hornebeck W, Emonard H, Monboisse JC, Bellon G (2002) Matrix-directed regulation of pericellular proteolysis and tumor progression. Semin Cancer Biol 12:231–241

    Article  PubMed  Google Scholar 

  • Horwitz A, Duggan K, Greggs R, Decker C, Buck C (1985) The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol 101:2134–2144

    Article  PubMed  Google Scholar 

  • Huhtala P, Humphries MJ, McCarthy JB, Tremble PM, Werb Z (1995) Cooperative signaling by α5β1 and α4β1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129:8857–879

    Article  Google Scholar 

  • Humphries MJ, Ayad SR (1983) Stimulation of DNA synthesis by cathepsin D digests of fibronectin. Nature 305:811–813

    Article  PubMed  Google Scholar 

  • Hynes RO (1973) Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc Natl Acad Sci USA 70:3170–3174

    PubMed  Google Scholar 

  • Hynes RO (1974) Role of surface alterations in cell transformation: the importance of proteases and surface proteins. Cell 1:147–158

    Article  Google Scholar 

  • Hynes RO (1976) Cell surface proteins and malignant transformation. Biochim Biophys Acta 458:73–107

    PubMed  Google Scholar 

  • Hynes RO (1990) Fibronectins. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hynes RO ( 1999) The dynamic dialogue between cells and matrices: implication of fibronectin's elasticity. Proc Natl Acad Sci USA 96:2588–2590

    PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    PubMed  Google Scholar 

  • Hynes RO, Lively JC, McCarthy JH, Taverna D, Francis SE, Hodivala-Dilke K, Xiao Q (2002) The diverse roles of integrins and heir ligands in angiogenesis. Cold Spring Harbor Symp Quant Biol 67:143–153

    Article  PubMed  Google Scholar 

  • Hynes RO, Zhao Q (2000) The evolution of cell adhesion. J Cell Biol 113:2909–2921

    Google Scholar 

  • Imhoff JM, Blondeau X, Planchenault T, Emod I, Keil-Dlouha V (1990) Collagenase activation of latent matrix degrading proteinases from human plasma fibronectin. Biol Chem Hoppe-Seyler 371:137–144

    Google Scholar 

  • Javelaud D, Mauviel A (2004) Mammalian transforming growth factor-βs: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol 36:1161–1165

    Article  PubMed  Google Scholar 

  • Julien-Grille S, Bellacosa A, Upson J, Klein-Szanto A, van Roy F, Lee-Kwon W, Donowitz M, Tsichlis PN, Larue L (2003) The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63:2172–2178

    PubMed  Google Scholar 

  • Julien-Grille S, Moore R, Denat L, Morali OG, Delmas V, Bellacosa A, Larue L (2004) The role of insulin-like growth factors in the epithelial to mesenchymal transition. In: Savagner P (ed) Rise and Fall of epithelial phenotype. Eurekah.com and Kluwer Academic/Plenum, Dordtrecht, pp 1–21

    Google Scholar 

  • Kadar A, Tökés AM, Kulka J, Robert L (2002) Extracellular matrix components in breast carcinomas. Semin Cancer Biol 12:243–257

    Article  PubMed  Google Scholar 

  • Klein G (2002) Introduction: genetic and epigenetic contributions to tumor evolution. Semin Cancer Biol 12:327–330

    Article  PubMed  Google Scholar 

  • Klein G (2004) Cancer, apoptosis and nonimmune surveillance. Cell Death Differ 11:13–17

    Article  PubMed  Google Scholar 

  • Klein G, Klein E (1955) Variation in cell populations of transplanted tumors as indicated by studies on the ascites transformation. Exp Cell Res (Suppl 3):218–229

    Google Scholar 

  • Kleinman HK, McGarvey ML, Hassel JR, Cannon VL, Laurie GW, Martin GR (1986) Basement membrane complexes with biological activity. Biochemistry 25:312–318

    Article  PubMed  Google Scholar 

  • Kondro W (2004) Molecular biology. Consortium tackles mouse regulome. Science 304(5673):942

    Google Scholar 

  • Labat-Robert J (2002) Fibronectin in malignancy. Effect of aging. Semin Cancer Biol 12:187–195

    PubMed  Google Scholar 

  • Labat-Robert J (2004) Cell-matrix interactions in aging: role of receptors and matricryptins. Ageing Res Rev 3:233–247

    Article  PubMed  Google Scholar 

  • Labat-Robert J, Robert L (2000) Interaction between cells and extracellular matrix: signaling by integrins and the elastin-laminin receptor. In: Macieira-Coelho A (ed) Progress in molecular and subcellular biology, vol 25. Springer, Berlin Heidelberg New York, pp 57–70

    Google Scholar 

  • Labat-Robert J, Potazman JP, Derouette JC, Robert L (1981a) Age-dependent increase of human plasma fibronectin. Cell Biol Int 5:969–973

    Google Scholar 

  • Labat-Robert J, Birembaut P, Robert L, Adnet JJ (1981b) Modification of fibronectin distribution pattern in solid human tumors. Diagn Histopathol 4:299–306

    PubMed  Google Scholar 

  • Labat-Robert J, Birembaut P, Robert L, Adnet JJ (1983) Fibronectin distribution pattern in solid human tumors. In: Lapis K, Jeney A, Price MR (eds) Tumor progression and markers. Kugler Publ, Amsterdam, pp 387–392

    Google Scholar 

  • Labat-Robert J, Kern P, Robert L (1992) Biomarkers of connective tissue aging: biosynthesis of fibronectin, collagen type III and elastase. Ann NY Acad Sci 673:16–22

    PubMed  Google Scholar 

  • Labat-Robert J, Marques MA, N'Doye S, Alperovitch A, Moulias R, Allard M, Robert L (2000) Plasma fibronectin in French centenarians. Arch Gerontol Geriatr 31:95–105

    Article  PubMed  Google Scholar 

  • Lapis K, Timar J (2002) Role of elastin-matrix interactions in tumor progression. Semin Cancer Biol 12:209–217

    Article  PubMed  Google Scholar 

  • Laurent TC (1970) Structure of hyaluronic acid. In: Balazs EA (ed) Chemistry and molecular biology of the intercellular matrix, vol 2. Academic Press, London, pp 703–742

    Google Scholar 

  • Laurent TC (ed) (1998) The biology of hyaluronan. Wiley, Chichester

    Google Scholar 

  • Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N (2003) Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308:885–891

    Article  PubMed  Google Scholar 

  • Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E, Keating MT (1998a) Elastin is an essential determinant of arterial morphogenesis. Nature 393:276–280

    Article  PubMed  Google Scholar 

  • Li DY, Faury G, Taylor DG, Davis EC, Boyle WA, Mecham RP, Stenzei P, Boek B, Keating MT (1998b) Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest 102:1783–1787

    PubMed  Google Scholar 

  • Liotta LA, Kohn E (2004) Cancer and the homeless cell. Nature 430:973–974

    Article  PubMed  Google Scholar 

  • Ljubimova JY, Lakhter AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, Sorokin LM, Ljubimov AV, Black KL (2001) Overexpression of α4 chain containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res 61:5601–5610

    PubMed  Google Scholar 

  • Määttä M, Virtanen I, Burgeson R, Autio-Harmainen H (2001) Comparative analysis of the distribution of laminin chains in the basement membranes in some malignant epithelial tumors: the α1 chain of laminin sows a selected expression pattern in human carcinomas. J Histochem Cytochem 49:711–725

    PubMed  Google Scholar 

  • Macieira-Coelho A (2002) The biology of conformation in the regulation of the senescent and transformed cell phenotype. Semin Cancer Biol 12:165–171

    PubMed  Google Scholar 

  • Maffini MV, Soto AM, Calabro JM, Ucci AA, Sonnenschein C (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117:1495–1502

    PubMed  Google Scholar 

  • Magnusson KP, Satalino R, Qian W, Klein G, Wiman KG (1998) Is conversion of solid into more anoxic ascites tumors associated with p53 inactivation? Oncogene 17:2333–2337

    Article  PubMed  Google Scholar 

  • Martin GR, Liotta LA, Kleinman HK (1996) Interaction of tumor cells with basement membranes and laminin-1. In: Ekblom P, Timpl R (eds) The laminins. Harwood Academic Publ, Amsterdam, pp 277–290

    Google Scholar 

  • Mecham RP, Hinek A (1996) Non-integrin laminin receptors. In: Ekbom P, Timpl R (eds) The laminins. Harwood Academic, Amsterdam, pp 159–183

    Google Scholar 

  • Mercurio AM, Rabinovitz I (2001) Towards a mechanistic understanding of tumor invasion-lessons from the α6β4 integrin. Semin Cancer Biol 11:129–141

    Article  PubMed  Google Scholar 

  • Miller JH, Reznikoff WS (eds) (1978) The operon. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Morali OG, Delmas V, Moore R, Jeanney C, Thiery JP, Larue L (2001) IGF-II induces rapid β-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 20:4942–4950

    Article  PubMed  Google Scholar 

  • Morley M, Molony CM, Weber T, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747

    Article  PubMed  Google Scholar 

  • Mostafavi-Pour Z, Askari JA, Parkinson SJ, Parker PJ, Ng TTC, Humphries MJ (2003) Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol 161:155–167

    Article  PubMed  Google Scholar 

  • Nichols EJ, Fenderson BA, Carter WG, Hakomori SI (1986) Domain-specific distribution of carbohydrates in human fibronectin and the transformation-dependent translocation of branched type 2 cahin defined by monoclonal antibody C6. J Biol Chem 261:11295–11301

    PubMed  Google Scholar 

  • Noel A, Callé A, Emonard H, Nusgens B, Foidart JM, Lapiere CM (1988) Antagonistic effects of laminin and fibronectin in cell to cell and cell to matrix interactions in MCF-7 cultures. In Vitro Cell Dev Biol 24:373–380

    PubMed  Google Scholar 

  • Pattaroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12:197–207

    Article  PubMed  Google Scholar 

  • Paye M, Nusgens BV, Lapière CM (1987) Modulation of cellular biosynthetic activity in the retracting collagen lattice. Eur J Cell Biol 45:44–50

    PubMed  Google Scholar 

  • Perdommo JJ, Gounon P, Schaeverbeke M, Schaeverbeke J, Groult V, Jacob MP, Robert L (1994) Interaction between cells and elastin fibers: an ultrastructural and immunocytochemical study. J Cell Physiol 158:451–458

    Article  PubMed  Google Scholar 

  • Péterszegi G, Texier S, Robert L (1999) Cell death by overload of the elastin-laminin receptor on human activated lymphocytes: protection by lactose and melibiose. Eur J Clin Invest 29:166–172

    Article  PubMed  Google Scholar 

  • Péterszegi G, Dagonet F, Labat-Robert J, Robert L (2002) Inhibition of cell proliferation and fibronectin biosynthesis by Na ascorbate. Eur J Clin Invest 32:372–380

    Article  PubMed  Google Scholar 

  • Pyke C, Römer J, Kallunki P, Lund LR, Ralfkiär E, Danö K, Tryggvason K (1994) The γ2 chain of kalinin/laminin-5 is preferentially expressed in invading malignant cells in human cancers. Am J Pathol 145:782–791

    PubMed  Google Scholar 

  • Pyke C, Salo S, Ralfkiär E, Römer J, Danö K, Tryggvason K (1995) Laminin-5 is a marker of invading cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55:4132–4139

    PubMed  Google Scholar 

  • Quigley JP (1976) association of a protease (plasminogen activator) with a specific membrane fraction from transformed cells. J Cell Biol 71:472–486

    Article  PubMed  Google Scholar 

  • Quigley JP (1979) Phorbol ester-induced morphological changes in transformed chick fibroblasts: evidence for direct catalytic involvement of plasminogen activator. Cell 17:131–141

    Article  PubMed  Google Scholar 

  • Quigley JP, Goldfarb RH, Scheiner C, O'Donnell-Tormey J, Yeo TK (1980) Plasminogen activator and the membrane of transformed cells. In: Hynes RO, Fox CF (eds) Tumor cell surfaces and malignancy. Liss, New York, pp 773–796

    Google Scholar 

  • Reed CC, Iozzo RV (2003) The role of decorin in collagen fibrillogenesis and skin homeostasis. Glucoconjugate J 19:249–255

    Article  Google Scholar 

  • Ringertz N, Klein E, Klein G (1957) Histopathologic studies of peritoneal implantation and lung metastasis at different stages of the gradual transformation of the MC1 M mouse sarcoma into ascites form. J Natl Cancer Inst 18:173–199

    PubMed  Google Scholar 

  • Robert L (1986) Structural glycoproteins. In: Labat-Robert J, Timpl R, Robert L (eds) Structural glycoproteins in cell-matrix interactions. Front matrix biology, vol 11. Karger, Basel, pp 1–16

    Google Scholar 

  • Robert L (2000) Cellular and molecular mechanisms of aging and age related diseases. Path Oncol Res 6:3–9

    Google Scholar 

  • Robert L, Hornebeck W (1989) Elastin and elastases, vols I and II. CRC Press, Boca Raton

    Google Scholar 

  • Robert L, Labat-Robert J (2000) Aging of connective tissues, from genetic to epigenetic mechanisms. Biogerontology 1:123–131

    Article  PubMed  Google Scholar 

  • Rodriguez-Manzaneque JC, Lane TF, Ortega MA, Hynes RO, Lawler J, Iruela-Harispe ML (2001) Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci USA 98:12485–12490

    Article  PubMed  Google Scholar 

  • Santra M, Reed CC, Iozzo RV (2002) Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct from the EGF-binding epitope. J Biol Chem 277:35671–35681

    Article  PubMed  Google Scholar 

  • Saxen L, Koskimies O, Lahti A, Miettinen H, Rapola J, Wartiovaara J (1968) Differentiation of kidney mesenchyme in an experimental model system. Adv Morphogr 7:251–293

    Google Scholar 

  • Scott JE (1988) Proteoglycan-fibrillar collagen interactions. Biochem J 252:313–323

    PubMed  Google Scholar 

  • Schnaper HW, Kleinman HK, Grant DS (1993) Role of laminin in endothelial cell recognition and differentiation. Kidney Int 43:20–25

    PubMed  Google Scholar 

  • Seftor REB, Seftor EA, Koshikawa N, Meltzer PS, Gardner EMG, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJC (2001) Cooperative interaction of laminin-5 γ2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 61:6322–6327

    PubMed  Google Scholar 

  • Simizu S, Ishida K, Osada H (2004) Heparanase as a molecular target of cancer chemotherapy. Cancer Sci 95:553–558

    Article  PubMed  Google Scholar 

  • Sonnenberg A, Linders CJT, Modderman PW, Damsky CH, Aumailley M, Timpl R (1990) Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that α6β1 but not α6β4 functions as a major laminin receptor for fragment E8. J Cell Biol 110:2145–2155

    Article  PubMed  Google Scholar 

  • Szendroi M, Lapis K, Zalatnai A, Robert L, Labat-Robert J (1984) Appearance of fibronectin in putative preneoplastic lesions and in hepato-cellular carcinoma during chemical hepatocarcinogenesis in rats and in human hepatomas. J Exp Pathol 1:189–199

    PubMed  Google Scholar 

  • Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO (1986) Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46:271–282

    Article  PubMed  Google Scholar 

  • Taverna D, Disatnik MH, Rayburn H, Bronson RT, Yang J, Raando TA, Hynes RO (1998) Dystrophic muscle in mice chimeric for expression of alpha5 integrin. J Cell Biol 143:849–859

    Article  PubMed  Google Scholar 

  • Taverna D, Moher H, Crowley D, Borsig L, Varki A, Hynes RO (2004) Increased primary tumor growth in mice null for beta3-or beta3/beta5-integrins or selectins. Proc Natl Acad Sci USA 101:763–768

    Article  PubMed  Google Scholar 

  • Temkin V, Aingorn H, Puxeddu H, Goldschmidt O, Zcharia E, Gleich GJ, Vlodavsky I, Levi-Schaffer F ( 2004) Eosinophil major basic protein: first identified natural heparanase-inhibiting protein. J Allergy Clin Immunol 113:703–709

    Article  PubMed  Google Scholar 

  • Timar J, Tixier JM, Robert L, Hornebeck W, Lapis K (1990) Metastatic phenotype-dependent interactions between elastin and tumor cells. Clin Exp Metastasis 8:50

    Google Scholar 

  • Timar J, Diczasi Cs, Ladanyi A, Raso E, Hornebeck W, Robert L, Lapis K (1995) Interaction of tumour cells with elastin and the metastatic phenotype. In: Robert L (ed) The molecular biology and pathology of elastic tissues. Wiley, Chichester, pp 321–337

    Google Scholar 

  • Timar J, Lapis K, Dudas J, Sebestyen A, Kopper L, Kovalszky I (2002) Proteoglycans and tumor progression: Janus-faced molecules with contradictory functions in cancer. Semin Cancer Biol 12:173–186

    Article  PubMed  Google Scholar 

  • Travis MA, Humphries JD, Humphries MJ (2003) An unraveling tale of how integrins are activated from within. Trends Pharmacol Sci 24:192–197

    Article  PubMed  Google Scholar 

  • Varga Z, Jacob MP, Robert L, Fülöp T Jr (1989) Identification and signal transduction mechanism of elastin peptide receptor in human leukocytes. FEBS Lett 258:5–8

    Article  PubMed  Google Scholar 

  • Varner JA, Emerson DA, Juliano RL (1995) Integrin α5β1 expression negatively regulates cell growth:reversal by attachment to fibronectin. Mol Biol Cell 6:725–740

    PubMed  Google Scholar 

  • Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Invest 108:341–347

    Article  PubMed  Google Scholar 

  • Wang AZ, Ojakian GK, Nelson WJ (1990) Steps in the morphogenesis of polarized epithelium. Disassembly and assembly of plasma membrane domains during reversal of epithelia cell polarity in multicellular epithelial (MDCK) cysts. J Cell Sci 95:153–165

    PubMed  Google Scholar 

  • Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109:877–889

    Article  PubMed  Google Scholar 

  • Xie DL, Homandberg GA (1993) Fibronectin fragments bind to and penetrate cartilage tissue resulting in proteinase expression and cartilage damage. Biochim Biophys Acta 1182:189–196

    PubMed  Google Scholar 

  • Yamada KM, Yamada SS, Pastan I (1976) Cell surface protein partially restores morphology, adhesiveness and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci USA 73:1217–1221

    PubMed  Google Scholar 

  • Yamada KM, Schlessinger DH, Kennedy DW, Pastan I (1977) Characterisation of a major fibroblast cell surface glycoprotein. Biochemistry 16:5552–5559

    Article  PubMed  Google Scholar 

  • Yang JT, Bader BL, Kreidberg JA, Ullman-Cullere M, Trevithick JE, Hynes RO (1999) Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development. Dev Biol 215:264–277

    Article  PubMed  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  PubMed  Google Scholar 

  • Yurchenco PD, Wadsworth WG (2004) Assembly and tissue function of early embryonic laminins and netrins. Curr Opin Cell Biol 16:572–579

    Article  PubMed  Google Scholar 

  • Zcharia E, Metzger S, Chakek-Shaul T, Aingorn H, Elkin M, Friedmann Y, Weinstein T, Li JP, Lindahl U, Vlodavsky I (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18:252–263

    Article  PubMed  Google Scholar 

  • Zerlauth G, Wolf G (1985) Studies on the tumour promoter-induced release of fibronectin from human lung fibroblasts, and its counteraction by retinoic acid. Carcinogenesis 6:531–534

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Labat-Robert, J., Robert, L. (2005). The Extracellular Matrix During Normal Development and Neoplastic Growth. In: Macieira-Coelho, A. (eds) Developmental Biology of Neoplastic Growth. Progress in Molecular and Subcellular Biology, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27671-8_4

Download citation

Publish with us

Policies and ethics