Skip to main content

Biology of Foreign Bodies: Tolerance, Osteolysis, and Allergy

  • Chapter
Total Knee Arthroplasty
  • 3217 Accesses

Summary

In most individuals implanting the polymers and metals used in contemporary knee replacement surgery results in little or no reaction from the immune system. These materials are described as biologically tolerated or bioinert. However, as the functioning joint begins to wear, generating primarily polymer debris, the immune system commonly mounts an aggressive, macrophage-mediated response. This becomes evident after several years, both clinically and radiographically, as osteolysis [1, 2]. In a much smaller percentage of individuals, a second type of reaction, a very rapid, T-cell-mediated, “allergic”response, usually to metal, may be identified [3]. While the underlying processes are quite different, both reactions may ultimately lead to implant failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bauer TW, Schils J (1999) The pathology of total joint arthroplasty. II. Mechanisms of implant failure. Skeletal Radiol 28:483–497

    PubMed  Google Scholar 

  2. Jacobs JJ, Roebuck KA, Archibeck M, Hallab NJ, Glant TT (2001) Osteolysis: basic science. Clin Orthop 393:71–77

    PubMed  Google Scholar 

  3. Hallab N, Jacobs JJ, Black (2000) J Hypersensitivity to metallic biomaterials: a review of leukocyte migration inhibition assays. Biomaterials 21:1301–1314

    Article  PubMed  Google Scholar 

  4. Coury J, Levy RJ, McMillin, et al (1996) Degradation of materials in the biological environment. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science, an introduction to materials in medicine. Academic, San Diego, CA, pp 243–281

    Google Scholar 

  5. Merritt K, Brown SA, Sharkey NA (1984) The binding of metal salts and corrosion products to cells and proteins in vitro. J Biomed Mater Res 18:1005–1015

    Article  PubMed  Google Scholar 

  6. Charnley J (1979) Low friction arthroplasty of the hip. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  7. Black J (1984) Systemic effects of biomaterials. Biomaterials 5:11–18

    Article  PubMed  Google Scholar 

  8. Boynton EL, Henry M, Morton J, Waddell JP (1995) The inflammatory response to particulate wear debris in total hip Arthroplasty. Can J Surg 38:507–515

    PubMed  Google Scholar 

  9. Ollier LEX (1872) Greffes cutanees ou autoplastiques. Bull Acad de Med Paris 2:1, R413

    Google Scholar 

  10. Hey-Groves EW (1923) Arthroplasty. Br J Surg 11:234

    Google Scholar 

  11. Hey-Groves EW (1927) Some contributions to the reconstructive surgery of the hip. Br J Surg 14:486

    Google Scholar 

  12. LeVay D (1990) Implants in orthopaedic surgery. In: LeVay D (ed) The history of orthopaedics. Parthenon, Park Ridge, IL

    Google Scholar 

  13. Zierold AA (1924) Reaction of bone to various metals. Arch Surg 9:365

    Google Scholar 

  14. Howmedica, Inc. (1995) Strength for life: the Vitallium alloy story (monograph). Pfizer Hospital Products Group, Rutherford, N.J.

    Google Scholar 

  15. Walker PS (1977) Historical development of artificial joints. In: Walker PS (ed) Human joints and their artificial replacements. Charles C. Thomas, Springfield, IL

    Google Scholar 

  16. Williams DF, Roaf R (1973) Implants in surgery. W.B. Saunders, London

    Google Scholar 

  17. Donati ME, Savarino L, Granachi D, Ciapetti G, Cervallati M, Rotini R, Rizzoferrato A (1998) The effects of metal corrosion debris on immune system cells. Chir Organi Mov 83:387–393

    PubMed  Google Scholar 

  18. Doorn P, Campbell P, Worral J, et al (1998) Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res 42:103–111

    PubMed  Google Scholar 

  19. Judet J, Judt R, Legrange L, Dunoyer J (1954) Resection reconstruction of the hip. Arthroplasty with acrylic prosthesis. E. & S. Livingstone, Edinburgh

    Google Scholar 

  20. Harboush EJ (1953) A new operation for arthroplasty of the hip. Bull Hosp Joint Dis NY 14:242

    Google Scholar 

  21. Charnley J (1964) Bonding of prostheses to bone by cement. J Bone Joint Surg [Br] 46:518

    Google Scholar 

  22. Charnley J (1970) Acrylic cement in orthopaedic surgery. William and Wilkins, Baltimore

    Google Scholar 

  23. Bain AM (1973) Replacement of the knee joint with the Walldius prosthesis using cement fixation. Clin Orthop 94:65–71

    PubMed  Google Scholar 

  24. Convery FR, Beber CA (1973) Total knee arthroplasty. Clin Orthop 94: 42–49

    PubMed  Google Scholar 

  25. Girzadas DV, Geens S, Clayton ML, Leidholt JD (1968) Performance of a hiinged metal knee prosthesis. J Bone Joint Surg [Am] 50:355–364

    PubMed  Google Scholar 

  26. Gunston FH (1971) Polycentric knee arthroplasty. Prosthetic simulation of normal knee movement. J Bone Joint Surg [Am] 53:272–277

    Google Scholar 

  27. Gunston FH, MacKenzie RI (1976) Complications of polycentric knee arthroplasty. Clin Orthop 120:11–17

    PubMed  Google Scholar 

  28. Campbell P, Ma S, Yeom B, et al (1995) Isolation of predominantly submicron-sized UHMWPE wear particles from periprosthetic tissues. J Biomed Mater Res 29:127–131

    Article  PubMed  Google Scholar 

  29. Jacobs JJ, Shanbhag A, Glant TT, Black J, Galante JO (1994) Wear debris in total joint replacements. J Am Acad Orthop Surg 2:212–220

    PubMed  Google Scholar 

  30. Margevicius KJ, Bauer TW, McMahon JT, Brown SA, Merritt K (1994) Isolation and characterization of debris in membranes around total joint prostheses. J. Bone Joint Surg [Am] 76:1664–1675

    PubMed  Google Scholar 

  31. Amstutz HCA, Campbell P, Kossovsky N, Clarke IC (1992) Mechanisms and clinical significance of wear debris-induced osteolysis. Clin Orthop 276:7–18

    PubMed  Google Scholar 

  32. Aspenberg P, Van der Vis H (1998) Migration, particles and fluid pressure: a discussion of causes of prosthetic loosening. Clin Orthop 352:75–80

    PubMed  Google Scholar 

  33. Aspenberg P (1998) Wear and osteolysis in total joint replacements. Acta Orthop Scand 69:435–436

    PubMed  Google Scholar 

  34. Harris WH (1995) The problem is osteolysis. Clin Orthop 311:46

    PubMed  Google Scholar 

  35. Jasty MJ, Floyd WE III, Schiller AL, Goldring SR, Harris WH (1986) Localized osteolysis in stable, non-septic total hip replacement. J Bone Joint Surg [Am] 68:912–919

    PubMed  Google Scholar 

  36. Maloney WJ, Smith RL, Schmalzried TP, Chiba J, Huene D, Rubash H (1995) Isolation and characterization of wear particles generated in patients who have had failure of a hip arthroplasty without cement. J Bone Joint Surg [Am] 77:1301–1310

    PubMed  Google Scholar 

  37. Zicat B, Engh CA, Gokcen E (1995) Patterns of osteolysis around total hip components inserted with and without cement. J Bone Joint Surg [Am] 77:432–439

    PubMed  Google Scholar 

  38. Goodman SB, Huie P, Song Y, Schurman D, Malondy W, Woolson S, Sibley R (1998) Cellular profile and cytokine production at prosthetic interfaces. Study of tissues retrieved from revised hip and knee replacements. J Bone Joint Surg [Br] 80:531–539

    Article  Google Scholar 

  39. Lind M, Trindade MC, Yaszay B, Goodman SB, Smith RL (1998) Effects of particulate debris on macrophage-dependent fibroblast stimulation in coculture. J Bone Joint Surg [Br] 80:924–930

    Article  Google Scholar 

  40. Maloney WJ, Smith RL, Castro F, Schurman DJ (1993) Fibroblast response to metallic debris in vitro: enzyme induction, cell proliferation, and toxicity. J Bone Joint Surg [Am] 75:835–844

    PubMed  Google Scholar 

  41. Shanbhag AS, Macaulay W, Stefanovic-Racic M, Rubash HE (1998) Nitric oxide release by macrophages in response to particulate wear debris. J Biomed Mater Res 41:497–503

    Article  PubMed  Google Scholar 

  42. Watkins SC, Macaulay W, Turner D, Kang R, Rubash HE, Evans CH (1997) Identification of inducible nitric oxide synthase in human macrophages surrounding loosened hip prostheses. Am J Pathol 150:1199–1206

    PubMed  Google Scholar 

  43. Wooley PH, Nasser S, Fitzgerald RH Jr (1996) The immune response to implant materials in humans. Clin Orthop 326:63–70

    Article  PubMed  Google Scholar 

  44. Vronov I, Santerre JP, Hinek A, Callahan JW, Sandhu J, Boynton EL (1998) Macrophage phagocytosis of polyethylene particulate in vitro. J Biomed Mater Res 39:40–51

    Article  PubMed  Google Scholar 

  45. Cardona MA, Simmons RL, Kaplan SS (1992) TNF and IL-1 generation by human monocytes in response to biomaterials. J Biomed Mater Res 26:851–859

    Article  PubMed  Google Scholar 

  46. Ingham E, Green TR, Stone MH, Kowalski R, Watkins N, Fisher J (2000) Production of TNF-alpha and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials 21:1005–1013

    Article  PubMed  Google Scholar 

  47. Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79:319–326

    PubMed  Google Scholar 

  48. Nakashima Y, Sun DH, Trindade MC, Maloney WJ, Goodman SB, Schurman DJ, Smith RL (1999) Signaling pathways for tumor necrosis factor-alpha and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J Bone Joint Surg [Am] 81:603–615

    PubMed  Google Scholar 

  49. Jiranek WA, Machado M, Jasty M, Jevsevar D, Wolfe HJ, Goldring SR, Goldberg MJ, Harris WH (1993) Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg [Am] 75:863–879

    PubMed  Google Scholar 

  50. Baron R, Raves J, Ravesloot L, Neff M, Chakraborty D, Chatterjee A, Lomri A, Horne W (1993) Cellular and molecular biology of the osteoclast. In: Noda M (ed) Cellular and molecular biology of bone. Academic, New York, pp 446–484

    Google Scholar 

  51. Rifas L (1999) Bone and cytokines: beyond IL-1, IL-6 and TNF-alpha. Calcif Tissue Int 64:1–7

    Article  PubMed  Google Scholar 

  52. Kurosaka K, Watanabe N, Kobayashi Y (2001) Production of proinflammatory cytokines by resident tissue macrophages after phagocytosis of apoptotic cells. Cell Immunol 211:1–7

    Article  PubMed  Google Scholar 

  53. Pandey R, Quinn J, Joyner C, Murray DW, Triffitt JT, Athanasou NA (1996) Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells. Ann Rheum Dis 55:388–395

    PubMed  Google Scholar 

  54. Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT (1994) Macrophage/particle interactions: effect on size, composition and surface area. J Biomed Mater Res 28:81–90

    Article  PubMed  Google Scholar 

  55. Yang SY, Ren W, Park Y, Sieving A, Hsu S, Nasser S, Wooley PH (2002) Diverse cellular and apoptopic responses to variant shapes of UHMWPE particles in a murine model of inflmmation. Biomaterials 23:3535–3543

    Article  PubMed  Google Scholar 

  56. Gelb H, Schumacher HR, Cuckler J, Cucheyne R, Baker DG (1994) In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area. J Orthop Res 12:83–92

    Article  PubMed  Google Scholar 

  57. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E (1998) Polyethylene particles of a "critical size" are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19:2297–2302

    Article  PubMed  Google Scholar 

  58. Rao SK, Shirata KS, Furukawa T, Ushida T, Tateishi T, Kanazawa M, Katsube S, Janna S (1999) Evaluation of cytotoxicity of UHMWPE wear debris. Biomed Mater Eng 9:209–217

    PubMed  Google Scholar 

  59. Santavirta S, Nordstrom D, Metsarinne K, et al (1993) Biocompatibility of polyethylene and host response to loosening of cementless total hip replacement. Clin Orthop 297:100–110

    PubMed  Google Scholar 

  60. Horowitz SM, Luchetti WT, Gonzales JB, Ritchie CK (1998) The effects of cobalt chromium upon macrophages. J Biomed Mater Res 41:468–473

    Article  PubMed  Google Scholar 

  61. Shanbhag AS, Jacobs JJ, Black J, Galante JO, Glant TT (1995) Human monocyte response to particulate biomaterials generated in vivo and in vitro. J Orthop Res 13:792–801

    Article  PubMed  Google Scholar 

  62. Gonzalez O, Smith RL, Goodman SB (1996) Effect of size, concentration, surface area, and volume of polymethylmethacrylate particles on human macrophages in vitro. J Biomed Mater Res 30:463–473

    Article  PubMed  Google Scholar 

  63. Lee SH, Brennan FR Jacobs JJ, Urban RM, Ragasa DR, Glant TT (1997) Human monocyte/macrophage response to cobalt-chromium corrosion products and titanium particles in patients with total joint replacements. J Orthop Res 15:40–49

    Article  PubMed  Google Scholar 

  64. Shanbhag AS, Jacobs JJ, Glant TT, Gilbert JL, Black JM, Galante JO (1994) Composition and morphology of wear debris in failed uncemented total hip replacement. J Bone Joint Surg [Am] 76:60–67

    PubMed  Google Scholar 

  65. Howling GI, Barnett PI, Tipper JL, Stone MH, Fisher J, Ingham E (2001) Quantitative characterization of polyethylenbe debris isolated from periprosthetic tissue in early failure knee implants and early and late failure Charnley hip implants. J Biomed Mater Res 58:415–420

    Article  PubMed  Google Scholar 

  66. Shanbhag AS, Bailey HO, Hwang S, Cha CW, Eror NG, Rubash HE (2000) Quantitative analysis of ultrahigh molecular weight polyethylene (UHMWPE) wear debris associated with total knee replacements. J Biomed Mater Res 53:100–110

    Article  PubMed  Google Scholar 

  67. Hirakawa K, Bauer TW, Stulberg BM, Wilde AH, Borden LS (1996) Characterization of debris adjacent to failed knee implants of 3 different designs. Clin Orthop 331:151–158

    Article  PubMed  Google Scholar 

  68. Kadoya Y, Kobayashi A, Ohashi H (1998) Wear and osteolysis in total joint replacements. Acta Orthop Scand [Suppl] 278:1–16

    Google Scholar 

  69. Magnissalis EA, Eliades G, Eliades T (1999) Multitechnique characterization of articular surface of retrieved ultra high molecular weight polyethylene acetabular sockets. J Biomed Mater Res 48:365–373

    Article  PubMed  Google Scholar 

  70. Nasser S, Campbell PA, Kilgus DJ, Kossovsky N, Amstutz HC (1990) Cementless total joint arthroplasty prostheses with titanium alloy articular surfaces: a human retrieval analysis. Clinical Orthop 261:171–185

    Google Scholar 

  71. McKellop H, Park SH, Chiesa R, Doorn P, Lu B, Normand P, Grigoris P, Amstutz HC (1996) In vivo wear of three types of metal on metal hip prostheses during two decades of use. Clin Orthop 329[Suppl]: S128–S140

    Article  PubMed  Google Scholar 

  72. Kadoya Y, Revell PA, Kabayashi A, al Saffar N, Scott G, Freeman MA (1997) Wear particulate species and bone loss in failed total joint arthroplasties. Clin Orthop 340:118–129

    PubMed  Google Scholar 

  73. Van der Vis HM, Aspenberg P, Marti RK, et al (1998) Fluid pressure causes bone resorption in a rabbit model of prosthetic loosening. Clin Orthop 350:201–208

    PubMed  Google Scholar 

  74. Niedzwiecki S, Klapperich C, Short J, Jani S, Pruitt L (2001) Comparison of three joint simulator wear debris isolation techniques: acid digestion, base digestion, and enzyme cleavage. J Biomed Mater Res 56:245–249

    Article  PubMed  Google Scholar 

  75. Merle C, Vigan M, Devred D, Girardin P, Adessi B, Laurent R (1992) Generalized eczema from vitallium osteosynthesis material. Contact Dermatitis 27:257–258

    PubMed  Google Scholar 

  76. Mayor MB, Merritt K, Brown SA (1980) Metal allergy and the surgical patient. Am J Surg 139:477–479

    Article  PubMed  Google Scholar 

  77. Merritt K (1996) Systemic toxicity and hypersensitivity in biomaterials science. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science, an introduction to materials in medicine. Academic, San Diego, CA, pp 188–193

    Google Scholar 

  78. Merritt K, Brown SA (1996) Distribution of cobalt chromium wear and corrosion products and biologic reactions. Clin Orthop 329:S233–S243

    Article  PubMed  Google Scholar 

  79. Nasser S (2002) Immune hypersensitivity to orthopaedic biomaterials. Proc. of the Smith and Nephew 12th Annual International Knee Meeting, Rome, October 2–6, 2002. Smith & Nephew, Memphis, TN

    Google Scholar 

  80. Allardice JT (1967) Dermatitis due to an acrylic resin sealer. Trans A Rep St. John’s Hosp Derm Soc Lond 53:86

    Google Scholar 

  81. Gawkrodger DJ (1993) Nickel sensitivity and the implantation of orthopaedic prostheses. Contact Dermatitis 28:257–259

    PubMed  Google Scholar 

  82. Griem P, von Vultee C, Panthel K, Best SL, Sadler PJ, Shaw CF 3rd (1998) T cell cross-reactivity to heavy metals: identical cryptic peptides may be presented from protein exposed to different metals. Eur J Immunol 28:1941–1947

    Article  PubMed  Google Scholar 

  83. Hallab NJ, Jacobs JJ, Skipor A, Black J, Mikecz K, Galante J (2000) Systemic metal-protein binding associated with total joint replacement arthroplasty. J Biomed Mater Res 49:353–361

    Article  PubMed  Google Scholar 

  84. Jacobs JJ, Gilbert JL, Urban RM (1994) Corrosion of metallic implants. In: Stauffer RM (ed) Advances in operative orthopedics, vol 2. Mosby, St. Louis, pp 279–319

    Google Scholar 

  85. Foussereau J, Laugier P (1966) Allergic eczemas from metallic foreign bodies. Trans St. Johns Hosp Derm Soc 52:220–225

    Google Scholar 

  86. Halpin DS (1975) An unusual reaction in muscle in association with a Vitallium plate: a report of possible metal hypersensitivity. J Bone Joint Surg [Br] 57:451–453

    PubMed  Google Scholar 

  87. Rooker GD, Wilkinson JD (1980) Metal sensitivity in patients undergoing hip replacement: a prospective study. J Bone Joint Surg [Br] 62:502–505

    Google Scholar 

  88. Moulon C, Vollmer J, Weltzien HU (1995) Characterization of processing requirements and metal cross-reactivities in T-cell clones from patients with allergic contact dermatitis to nickel. Eur J Immunol 25:3308–3315

    PubMed  Google Scholar 

  89. King I Jr, Fransway A, Adkins RB (1993) Chronic urticaria due to surgical clips [letter]. N Engl J Med 329:1583–1584

    Article  Google Scholar 

  90. Fisher AA (1956) Allergic sensitization of the skin and oral mucosa to acrylic denture materials. J Prosthet Dent 6:593

    Google Scholar 

  91. Velen NK, Svejaard E, Menne T (1979) In vitro lymphocyte transformation to nickel: a study of nickel-sensitive patients before and after epicutaneous and oral challenge with nickel. Acta Derm Venereol 59:447–451

    PubMed  Google Scholar 

  92. Spiechowicz E, Glantz PO, Axell R, Chmielewski W (1984) Oral exposure to a nickel-containing dental alloy of persons with hypersensitive skin reactions to nickel. Contact Dermatitis 10:206–211

    PubMed  Google Scholar 

  93. Hubler WR Jr, Hubler WR Sr (1983) Dermatitis from a chromium dental plate. Contact Dermatitis 9:377–383

    PubMed  Google Scholar 

  94. Vilaplana J, Romaguera C, Cornellana F (1994) Contact dermatitis and adverse oral mucus membrane reactions related to the use of dental prostheses. Contact Dermatitis 30:80–84

    PubMed  Google Scholar 

  95. Schor SL, Allen TD, Winn B (1983) Lymphocyte migration into three-dimensional collagen matrices: a quantitative study. J Cell Biol 96:1089–1096

    Article  PubMed  Google Scholar 

  96. Nelson RD, Quie PG, Simmons RL (1975) Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migraton of human polymorphonuclear leukocytes and monocytes. J Immunol 115:1650–1656

    PubMed  Google Scholar 

  97. Soborg M, Bendixen G (1967) Human lymphocyte migration as a parameter of hypersensitivity. Acta Med Scand 181:247–256

    PubMed  Google Scholar 

  98. Pizzoferrato A, Ciapetti, G, Stea S, Cenni E, Arciola CR, Granchi D, Savarino L (1994) Cell culture methods for testing biocompatibility. Clin Mater 15:173–190

    Article  PubMed  Google Scholar 

  99. Chadha HS, Wooley PH, Sud S, Fitzgerald RH Jr (1995) Cellular proliferation and cytokine responses to polymethylmethacrylate particles in patients with a cemented total joint arthroplasty. Inflamm Res 44:145–151

    Article  PubMed  Google Scholar 

  100. Nasser S, Wooley PA (2005) Comparison of ceramic and oxinium total knee femoral components in patients with cobalt-chrome hypersensitivity. Proc. of the Mid-America Orthopaedic Society 23rd Annual Meeting, Amelia Island, FL, April 20–24, 2005 (to be published)

    Google Scholar 

  101. Brown GC, Lockshin MD, Salvati EA, Bullough PG (1977) Sensitivity to metal as a possible cause of sterile loosening after cobalt-chromium total hip replacement arthroplasty. J Bone Joint Surg [Am] 59:164–168

    PubMed  Google Scholar 

  102. Deutman R, Mulder TJ, Brian R, Nater JP (1977) Metal sensitivity before and after total hip arthroplasty. J Bone Joint Surg [Am] 59:862–865

    PubMed  Google Scholar 

  103. Elves MW, Wilson JN, Scales JT, Kemp HB (1975) Incidence of metal sensitivity in patients with total joint replacements. Br Med J 4:376–378

    PubMed  Google Scholar 

  104. Granchi D, Ciapett G, Stea S, Cavedagna D, Bettini N, Blanco T, Fontanesi G, Pizzoferrato A (1995) Evaluation of several immunological parameters in patients with aseptic loosening of hip arthroplasty. Chir Organi Mov 80:399–408

    PubMed  Google Scholar 

  105. Merritt K, Rodrigo JJ (1996) Immune response to synthetic materials: sensitization of patients receiving orthopaedic implants. Clin Orthop 326:71–79

    Article  PubMed  Google Scholar 

  106. Wooley PH, Fitzgerald RH, Song Z, Davis P, Whalen JD, Trumble S, Nasser S (1999) Antibodies to implant-bound proteins in patients with aseptic loosening of total joint arthroplasty: a preliminary report. J Bone Joint Surg [Am] 81: 616–621

    PubMed  Google Scholar 

  107. Wooley PH, Petersen S, Song S, Nasser S (1997) Cellular immune responses to orthopaedic implant material following cemented total joint replacement. J Orthop Res 15:874–880

    Article  PubMed  Google Scholar 

  108. Yang J, Merritt K (1994) Detection of antibodies against corrosion products in patients after CoCr total joint replacements. J Biomed Mater Res 28:1249–1258

    Article  PubMed  Google Scholar 

  109. Horowitz SM, Alkgan SA, Purdon MA (1996) Pharmacologic inhibition of particulate induced bone resorption. J Biomed Mater Res 31:9196

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Nasser, S. (2005). Biology of Foreign Bodies: Tolerance, Osteolysis, and Allergy. In: Bellemans, J., Ries, M.D., Victor, J.M. (eds) Total Knee Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27658-0_55

Download citation

  • DOI: https://doi.org/10.1007/3-540-27658-0_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20242-4

  • Online ISBN: 978-3-540-27658-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics