Advertisement

Cruciate Deficiency in the Replaced Knee

  • J. Victor
Chapter

Summary

At least one of the cruciate ligaments is sacrificed in most total knee arthroplasties. This can lead to important functional changes in the joint. In severe cases, instability causes early failure and revision of the implant. In a less extreme form, the cruciate deficiency leads to abnormal kinematics, affecting activities of daily life and reducing functional capacity of the knee joint. Technological advances opened the potential for studying the in vivo characteristics of the replaced knee. Significant differences in kinematics between the normal and the replaced knee have been reported in the literature. Many of these differences can be attributed to either anterior or posterior cruciate ligament deficiency following total knee arthroplasty.

Keywords

Total Knee Arthroplasty Cruciate Ligament Posterior Cruciate Ligament Total Knee Replacement Medial Femoral Condyle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andriacchi TP et al (1988) Retention of the posterior cruciate in total knee arthroplasty. J Arthroplasty 3:13–19Google Scholar
  2. 2.
    Asano T et al (2001) In vivo three dimensional knee kinematics using a biplanar image-matching technique. Clin Orthop 388:157–166PubMedGoogle Scholar
  3. 3.
    Babis GC et al (2002) The effectiveness of isolated tibial insert exchange in revision total knee arthroplasty. J Bone Joint Surg [Am] 84:64–68PubMedGoogle Scholar
  4. 4.
    Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43/6, JuneGoogle Scholar
  5. 5.
    Banks SA et al (1997) In vivo kinematics of cruciate retaining and substituting knee replacements. J Arthroplasty 3:297–304CrossRefGoogle Scholar
  6. 6.
    Banks S et al (2003) Knee motions during maximum flexion in fixed and mobile bearing arthroplasties. Clin Orthop 410:131–138PubMedGoogle Scholar
  7. 7.
    Bellemans J et al (2002) Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg [Br] 84:50–53CrossRefGoogle Scholar
  8. 8.
    Bertin KC et al (2002) In vivo determination of posterior femoral rollback for subjects having a NexGen posterior cruciate retaining total knee arthroplasty. J Arthroplasty 17:1040–1048CrossRefPubMedGoogle Scholar
  9. 9.
    Blunn GW et al (1991) The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop 273:253–260PubMedGoogle Scholar
  10. 10.
    Bolanos AA et al (1998) A comparison of isokinetic strength testing and gait analysis in patients with posterior cruciate-retaining and substituting knee arthroplasties. J Arthroplasty 13:906–915CrossRefPubMedGoogle Scholar
  11. 11.
    Brooks DH et al (2002) Polyethylene exchange only for prosthetic instability. Clin Orthop 405:182–188PubMedGoogle Scholar
  12. 12.
    Daniel DM et al (1988) The use of the quadriceps active test to diagnose posterior cruciate ligament disruption and measure posterior laxity of the knee. J Bone Joint Surg [Am] 70:386–391PubMedGoogle Scholar
  13. 13.
    Dennis DA et al (1998) Range of motion after total knee arthroplasty: the effect of implant design and weight bearing conditions. J Arthroplasty 13:748–752CrossRefPubMedGoogle Scholar
  14. 14.
    Dennis DA et al (2001) Femoral condylar lift-off in vivo in total knee arthroplasty. J Bone Joint Surg [Br] 83:33–39CrossRefGoogle Scholar
  15. 15.
    Dennis DA et al (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop 410:114–130PubMedGoogle Scholar
  16. 16.
    Dennis DA et al (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop 416:37–57PubMedGoogle Scholar
  17. 17.
    Dorr LD et al (1988) Functional comparison of posterior cruciate retained versus sacrificed total knee arthroplasty. Clin Orthop 236:36–43PubMedGoogle Scholar
  18. 18.
    Font-Rodriguez DE et al (1997) Survivorship of cemented total knee arthroplasty. Clin Orthop 345:79–86CrossRefPubMedGoogle Scholar
  19. 19.
    Freeman MAR et al (1988) Should the posterior cruciate ligament be retained or resected in condylar knee arthroplasty: the case for resection. J Arthroplasty 3:3–12Google Scholar
  20. 20.
    Haas BD et al (2002) Kinematic comparison of posterior cruciate sacrifice versus substitution in a mobile bearing total knee arthroplasty. J Arthroplasty 17:685–692CrossRefPubMedGoogle Scholar
  21. 21.
    Hill PF et al (2000) Tibiofemoral movement. 2: The loaded and unloaded living knee studied by MRI. J Bone Joint Surg [BR] 82:1196–1200CrossRefGoogle Scholar
  22. 22.
    Hoff WA et al (1998) A three dimensional determination of femorotibial contact positions under in vivo condtitions using fluoroscopy. J Clin Biomech 13:455–470CrossRefGoogle Scholar
  23. 23.
    Insall JN (1993) Historical development, classification, and charactheristics of knee prosthesis. In: Insall JN (ed) Surgery of the knee. Churchill Livingstone, New YorkGoogle Scholar
  24. 24.
    Iwaki H et al (2000) Tibiofemoral movement. 1: The shapes and relative movements of the femur and the tibia in unloaded cadaver knee. J Bone Joint Surg [Br] 82:1189–1195CrossRefPubMedGoogle Scholar
  25. 25.
    Kanisawa I et al (2003) Weight bearing knee kinematics in subjects with two types of anterior cruciate ligament reconstructions. Knee Surg Sports Traumatol Arthrosc 11:16–22PubMedGoogle Scholar
  26. 26.
    Kocmond JH et al (1995) Stability and range of motion of Insall-Burstein condylar prostheses. J Arthroplasty 10:383–388CrossRefPubMedGoogle Scholar
  27. 27.
    Komistek RD et al (2002) In vivo kinematics for subjects with and without an anterior cruciate ligament. Clin Orthop 404:315–325PubMedGoogle Scholar
  28. 28.
    Laskin RS (1996) Total knee replacement with posterior cruciate ligament retention in patients with a fixed varus deformity. Clin Orthop 331:29–34CrossRefPubMedGoogle Scholar
  29. 29.
    Laskin RS et al (1997) Total knee replacement with posterior cruciate ligament retention in rheumatoid arthritis. Problems and complications. Clin Orthop 345:24–28CrossRefPubMedGoogle Scholar
  30. 30.
    Lombardi AV et al (2001) An algorithm for the posterior cruciate ligament in total knee arthroplasty. Clin Orthop 392:75–87PubMedGoogle Scholar
  31. 31.
    Mahfouz M et al (2004) In vivo determination of normal and anterior cruciate ligament deficient knee kinematics. Scientific Exhibit at AAOS 71sr Annual Meeting, San FranciscoGoogle Scholar
  32. 32.
    Müller W (1983) The knee: form, function and ligament reconstruction. Springer-Verlag Berlin Heidelberg New YorkGoogle Scholar
  33. 33.
    O’Connor J et al (1990) Geometry of the knee. In: Dale D et al (eds) Knee ligaments, structure, function, injury and repair. Raven, New YorkGoogle Scholar
  34. 34.
    Ritter MA et al (1995) Flat-on-flat, nonconstrained, compression molded polyethylene total knee replacement. Clin Orthop 321:79–85PubMedGoogle Scholar
  35. 35.
    Sharkey PF et al (2002) Why are total knee arthroplasties failing today? Clin Orthop 404:7–13PubMedGoogle Scholar
  36. 36.
    Simmons S et al (1996) Proprioception following total knee arthroplasty with and without the posterior cruciate ligament. J. Arthroplasty 11:763–768CrossRefPubMedGoogle Scholar
  37. 37.
    Stiehl JB et al (1995) Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg [Br] 77:884–889Google Scholar
  38. 38.
    Stiehl JB et al (1997) In vivo kinematic analysis of a mobile bearing total knee prosthesis. Clin Orthop 345:60–66CrossRefPubMedGoogle Scholar
  39. 39.
    Stiehl JB et al (2000) In vivo kinematic comparison of posterior cruciate ligament retention or sacrifice with a mobile bearing total knee arthroplasty. Am J Knee Surg 13:13–18PubMedGoogle Scholar
  40. 40.
    Stiehl JB et al (2000) The cruciate ligaments in total knee arthroplasty. J Arthroplasty 15:545–550CrossRefPubMedGoogle Scholar
  41. 41.
    Stiehl J (2001) Femoral roll back is obtainable and beneficial (not sure). In: Laskin RS (ed) Controversies in total knee replacement. Oxford University Press, Oxford, pp 118–131Google Scholar
  42. 42.
    Straw R et al (2003) Posterior cruciate ligament at total knee replacement. J Bone Joint Surg [Br] 85:671–674Google Scholar
  43. 43.
    Sultan PG et al (2003) Optimizing flexion after total knee arthroplasty. Clin Orthop 416:167–173PubMedGoogle Scholar
  44. 44.
    Udomkiat P et al (2000) Functional comparison of posterior cruciate retention and substitution knee replacement. Clin Orthop 378:192–201CrossRefPubMedGoogle Scholar
  45. 45.
    Victor J et al (2005) Posterior stabilised knee replacements have more natural kinematics than cruciate retaining knee replacements. J Bone Joint Surg [Br] (in press)Google Scholar
  46. 46.
    Windsor R et al (1989) Mechanisms of failure of the femoral and tibial components in total knee arthroplasty. Clin Orthop Rel Res 248:15–20Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2005

Authors and Affiliations

  • J. Victor

There are no affiliations available

Personalised recommendations