Skip to main content

Bildung der Kontinente und Evolution — eine Reise durch Raum und Zeit

  • Chapter
Allgemeine Geobotanik

Part of the book series: Springer-Lehrbuch

  • 5477 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.5 Literatur

  • Airmer M (1933) Rekonstruktion von Pleuromeia sternbergi Corda, nebst Bemerkungen der Morphologie der Lycopodiales. Paläontographica B, 78: 47–56

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108

    CAS  ISI  PubMed  Google Scholar 

  • Alvin K, Chaloner WG (1970) Parallel evolution in leaf veination: an alternative view of angiosperm origins. Nature 226: 662–663

    Article  PubMed  CAS  ISI  Google Scholar 

  • Arber EAN, Parkin J (1907) On the origins of angiosperms. Journal of the Linnean Society of Botany 38: 29–80

    Google Scholar 

  • Archangelsky S (1990) Plant distribution in Gondwana during the Late Paleozoic. In: Taylor TN, Taylor EL (eds) Antarctic paleobotany: its role in the reconstruction of Gondwana, pp 102–117. Springer, New York

    Google Scholar 

  • Arens NC, Jahren H (2000) Carbon isotope excursion in atmospheric CO2 at the Cretaceous-Tertiary boundary: evidence from terrestrial sediments. Palaios 15: 314–322

    ISI  Google Scholar 

  • Armbruster WS (1992) Phylogeny and the evolution of plant-animal interactions. Bioscience 42: 12–20

    ISI  Google Scholar 

  • Axelrod DJ (1966) Origin of deciduous and evergreen habits in temperate forests. Evolution 20: 1–15

    ISI  Google Scholar 

  • Axelrod DJ, Raven PH (1978) Late Cretaceous and Tertiary vegetation history of Africa. In: Werger MJA (ed): Biogeography and vegetation history of Southern Africa. Den Haag

    Google Scholar 

  • Bahlburg H, Weisz R, Wünnemann K (2003) Run-up of tsunamis in the Gulf of Mexico caused by the Chicxulub impact event. EGS-AGU-ENG Joint Assembly, Nizza

    Google Scholar 

  • Bakker RT (1978) Dinosaur feeding behaviour and the origin of flowering plants. Nature 274: 661–663

    Article  ISI  Google Scholar 

  • Bambach RK, Scotese CR, Ziegler AM (1980) Before Pangea: the geographies of the Paleozoic world. American Scientist 68: 26–38

    ISI  Google Scholar 

  • Banks HP, Leclerq S, Hueber FM (1975) Anatomy and morphology of Psilophyton dawsonii sp. n., from the Late Lower Devonian of Quebec (Gaspe) and Ontario, Canada. Palaeontographica America 8: 77–127

    Google Scholar 

  • Barret PM (2000) Evolutionary consequences of dating the Yixian Formation. Trends in Ecology and Evolution 15: 99–103

    Google Scholar 

  • Barthlott W (1998) The uneven distribution of global biodiversity. In: Ehlers E, Kraft T (eds.) German Global Change Research 1998, p 36

    Google Scholar 

  • Bateman RM, Crane PR, DiMichele WA, Kenrick P, Rowe NP, Speck T (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annual Review of Ecology and Systematics 29: 263–292

    Article  ISI  Google Scholar 

  • Beck CB (ed, 1988) Origin and evolution of gymnosperms. Columbia University Press, New York

    Google Scholar 

  • Berggren WA, Couvering JA van (1986) Catastrophes and Earth history. The new uniformitarism. Woods Hole Oceanographic Institution Symposium, Princeton University Press, Princeton/NJ

    Google Scholar 

  • Berner RA (1997) The rise of plants and their effect on weathering and atmospheric CO2. Science 276: 544–546

    Article  CAS  ISI  Google Scholar 

  • Broutin J, Kerp H (1994) Aspects of Permian palaeobotany and palynology. XIV. A new form-genus of broad-leaved Late Carboniferous and Early Permian northern hemisphere conifers. Rev Palaeobot Palynol 83: 241–251

    Google Scholar 

  • Bryant E (1997) Climate process and change. Cambridge University Press, Cambridge

    Google Scholar 

  • Burnett M, August PV, Brown JH, Killingbeck KT (1998) The influence of geomorphological heterogeneity on biodiversity. I. Patch-scale perspective. Conserv Biol 12: 363–370

    Article  Google Scholar 

  • Byatt A, Fothergill A, Holmes M (2001) Unser blauer Planet. — Eine Naturgeschichte der Meere. Egmont, Köln

    Google Scholar 

  • Call VB, Manchester SR, Dilcher DL (1993) Wetherellia fruits and Associated Fossil Plant Remains from the Paleocene/Eocene Tuscahoma-Hatchetigbee Interval, Meridian, Mississippi. Mississippi Geology 14: 10–18

    Google Scholar 

  • Cattolico RA (1986) Chloroplast evolution in algae and land plants. Tree 1: 64–66

    Google Scholar 

  • Cerling TE, Wang Y, Quade J (1993) Global ecological changes in the late Miocene: expansion of C4 ecosystems. Nature 316: 345

    Google Scholar 

  • Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153–158

    Article  CAS  ISI  Google Scholar 

  • Chaloner WG (1970) The rise of first land plants. Biological reviews 45: 353–377

    ISI  Google Scholar 

  • Chaloner WG, Creber GT (1990) Do fossil plants give a climate signal? Journal of the Geological Society London 147: 343–350

    Google Scholar 

  • Chambers TC, Drinnan AN, Loughlin S (1998) Some morphological features of Wollemi-Pine (Wollemia nobilis, Araucariaceae) and their comparisons to Cretaceous plant fossils. Int J Plant Sciences 159: 160–171

    Google Scholar 

  • Chase MW, Soltis DE, Olmstead RG (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbc L. Ann Missouri Bot Garden 80: 528–580

    Google Scholar 

  • Choukroune P, Francheteau J, Hekinian R (1984) Tectonics of the East Pacific Rise near 15°50’N: a submersible study. Earth Planet Sci Lett 68: 115–127

    Article  Google Scholar 

  • Christophel DC (1989) Evolution of the Australian Flora through the Tertiary. Plant Syst Evol 162: 63–78

    Article  Google Scholar 

  • Claussen M, Kubatzki C, Brovkin V, Ganopolski A, Hoelzmann P, Pachur, HJ (1999) Simulation of an abrupt change in Saharan vegetation at the end of the mid-Holocene. Geophys Res Letters 24: 2037–2040

    Google Scholar 

  • Collinson ME (1990) Plant evolution and ecology during the early Cainozoic diversification. Advances in Botanical Research 17: 1–98

    Article  ISI  Google Scholar 

  • Condie KC, Sloan RE (1998) Origin and evolution of Earth. Prentice Hall/NJ

    Google Scholar 

  • Copley J (2001) The evolution of the atmosphere. Nature 410: 862–864

    Article  PubMed  CAS  ISI  Google Scholar 

  • Cox CB & PD Moore (1993) Biogeography. 5th Ed. Blackwell, London

    Google Scholar 

  • Crane PR (1985): Phylogenetic analysis of seed plants and the origins of angiosperms. Annals of the Missouri Botanical Garden 72: 716–793

    ISI  Google Scholar 

  • Crane PR (1987): Vegetational consequences of the angiosperm diversification. In: Friis, EM, Chaloner WG, Crane PR (eds) The origins of angiosperms and their biological consequences, pp 107–144, Cambridge University Press, Cambridge

    Google Scholar 

  • Crane PR, Lidgard S (1989) Angiosperm diversification and paleolatitudinal gradients in cretaceous floristic diversity. Science 246: 675–678

    ISI  PubMed  Google Scholar 

  • Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374: 27–33

    Article  CAS  ISI  Google Scholar 

  • Dauteuil O, Brun JP (1993) Oblique rifting in a slow spreading ridge. Nature 361: 145–148

    Article  ISI  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1994) Current plate motions. Geophys J Int 101: 425–478

    Google Scholar 

  • Dettmann ME (1992) Structure and floristics of Cretaceous vegetation of southern Gondwana: implications for angiosperm biogeography. Palaeobotanist 41: 224–233

    Google Scholar 

  • Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426: 405–412

    Article  PubMed  CAS  ISI  Google Scholar 

  • Dickens GR (2004) Hydrocarbon-driven warming. Nature 429: 513–515

    Article  PubMed  CAS  ISI  Google Scholar 

  • Dickens GR, O’Neil JR, Rea DK, Owen RM (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotype excursion at the end of the Palaeocene. Palaeoceanography 10: 965–971

    Google Scholar 

  • Dilcher DL (2001) Palaeobotany: Some aspects of non-flowering and flowering plant evolution. Taxon 50: 697–711

    ISI  Google Scholar 

  • Dilcher DL, Crane PR (1984) Archaeanthus: an early angiosperm from the Cenomanian of the western interior of North America. Annals of the Missouri Botanical Gardens 71: 351–783

    Google Scholar 

  • Doyle JA (1998) Phylogeny of vascular plants. Annual Review of Ecology and Systematics 29: 567–599

    Article  ISI  Google Scholar 

  • Drinnan AN, Crane PR, Friis EM, Pedersen KR (1990) Lauraceous flowers from the Potomac Group (mid Cretaceous) of eastern North America. Botanical Gazette 151: 370–380

    ISI  Google Scholar 

  • Edwards D, Berry, C (1991) Silurian and Devonian. In: Cleal, CJ (ed): Plant fossils in geological investigations, pp 117–148, Ellis Horwood, New York

    Google Scholar 

  • Edwards D, Kerp H, Hass H (1998) Stomata in early land plants: an anatomical and ecophysiological approach. J Exp Bot 49: 255–278

    Article  Google Scholar 

  • Ellenberg H (1982) Vegetation Mitteleuropas mit den Alpen. 3. Aufl, Eugen-Ulmer, Stuttgart

    Google Scholar 

  • Erdman G (1948) Did dicotyledonous plants exist in early jurassic times? Geol Förenigens i Stockholm, Förhandlingar, 265–271

    Google Scholar 

  • Faupel J (2004) Heißes Eis: Gashydrate — Erdgas der 3. Generation. Geowiss Mitteilungen 16: 20–23, Hannover

    Google Scholar 

  • Florin R (1951) Evolution in cordaites and conifers. Acta Horti Bergiani 15: 285–388

    Google Scholar 

  • Fornari DJ, Haymon RM, Perfit MR, Edwards MH (1998) Geological characteristics and evolution of the axial zone on fast spreading mid-ocean ridges: formation of an axial summit through along the East Pacific Rise, 9°–10°N 1998. J Geophys Res 103: 9827–9855

    Article  Google Scholar 

  • Fortey R (1999) Leben — Eine Biographie — Die ersten vier Milliarden Jahre. Beck, München

    Google Scholar 

  • Fortey R (2002): Trilobiten! Fossilien erzählen die Geschichte der Erde. Beck, München

    Google Scholar 

  • Fowell SJ, Cornet B, Olsen PE (1994) Geologically rapid Late Triassic extinctions; palynological evidence from the Newark Supergroup. In: Klein GD (ed): Pangea; paleoclimate, tectonics, and sedimentation during accretion, zenith and breakup of a supercontinent, pp 197–206. Geological Society of America, Boulder

    Google Scholar 

  • Frenzel B, Pecsi M, Velichko AA (1992) Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere. Fischer, Stuttgart

    Google Scholar 

  • Frey W, Lösch R (1998) Lehrbuch der Geobotanik. Gustav Fischer, Stuttgart

    Google Scholar 

  • Friis EM, Crane PR, Pederson KR (1986) Floral evidence for Cretaceous chloranthoid angiosperms. Nature 320: 163–164

    Article  ISI  Google Scholar 

  • Friis EM, Chaloner WG, Crane PR (eds, 1987) The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Friis EM, Pederson KR, Crane PR (2001) Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410: 357–360

    Article  PubMed  CAS  ISI  Google Scholar 

  • Fuchs D, Baehr M (1998) Australien — Reisen und Erleben. Kosmos-Verlag

    Google Scholar 

  • Gandolfo MA, Nixon KC, Crepet WL, Stevenson DW, Friis EM (1998) Oldest known fossils of monocotyledons. Nature 394: 532–533

    Article  CAS  ISI  Google Scholar 

  • Gensel PG, Andrews HN (1987) The evolution of early land plants. American Scientist 75: 478–489

    ISI  Google Scholar 

  • Göbel P (1997) Das Naturerbe der Menschheit: Landschaft und Naturschätze unter dem Schutz der UNESCO. Frederking & Thaler, München

    Google Scholar 

  • Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed): Stromatolites. pp. 113–126, Elsevier, Amsterdam

    Google Scholar 

  • Gothan W, Weyland H (1973) Lehrbuch der Paläobotanik. BLV, München, Berlin, Wien

    Google Scholar 

  • Gray J (1993) Major Paleozoic land plant evolutionary bio-events. Palaeogeography, Palaeoclimatology, Palaeoecology 104: 153–169

    Article  ISI  Google Scholar 

  • Greenwood DR (2000) Early Paleogene warm climates and vegetation in southeastern Australia. Geological Society of Australia Abstracts 59: 192

    Google Scholar 

  • Gries B (1985) Geologie — Der Erdglobus — Evolution der Organismen. Westf Museum für Naturkunde, Münster

    Google Scholar 

  • Grotziner JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences 27: 313–358

    Google Scholar 

  • Gung Y, Panning M, Romanowicz B (2003) Global anisotropy and the thickness of continents. Nature 422:707–711

    Article  PubMed  CAS  ISI  Google Scholar 

  • Hallam A (1975) Jurassic environments. — Cambridge University Press, Cambridge

    Google Scholar 

  • Hauschke N, Wilde V (1999) Trias — Eine ganz andere Welt — Mitteleuropa im frühen Erdmittelalter. Verlag Dr. Friedrich Pfeil, München

    Google Scholar 

  • Hauser W (2003): Klima. Das Experiment mit dem Planeten Erde. Sonderausstellung des Deutschen Museums, Zentrum Neue Technologien, vom 7.11.2002-15.6.2003, München

    Google Scholar 

  • Hayes JM (1994): Global methanotrophy at the Archean-Proterozoic transition. In: Bengston S (ed): Early life on Earth, pp. 220–236. Columbia University Press, New York

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science 194: 1121–1132

    ISI  PubMed  Google Scholar 

  • Heezen BC (1960) The rift in the ocean floor. Sci Am 203: 99–106

    Article  Google Scholar 

  • Hiesel R, Haeseler AV, Brennicke A (1994) Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proceedings of the National Academy of Sciences of the United States of America 91: 634–638

    PubMed  CAS  ISI  Google Scholar 

  • Hill KB (1997) The Wollemi-Pine: A recently discovered Australian genus of Araucariaceae. American Journal of Botany 84(6): 202–203

    Google Scholar 

  • Hill, C. R. & P. R. Crane (1982): Evolutionary cladistics and the origin of angiosperms. — Syst Ass 21: 269–361.

    Google Scholar 

  • Hirmer M (1927) Handbuch der Paläobotanik. München, Berlin

    Google Scholar 

  • Hofrichter R (2001) Das Mittelmeer. Fauna, Flora, Ökologie. Bd 1. Spektrum Verlag, Heidelberg

    Google Scholar 

  • Holmes WBK (1998) The Triassic vegetation of eastern Australia. Journal of African Earth Sciences 27: 115–116

    Google Scholar 

  • Huang QC, Dilcher DL (1994) Evolutionary and Paleoecological Implications of Fossil Plants from the Lower Cretaceous Cheyenne Sandstone of the Western Interior. In: Shurr GW, Ludvigson GA, Hammond RH (eds): Perspectives on the Eastern Margin of the Cretaceous Western Interior Basin. Geological Society of America, Special Paper 287

    Google Scholar 

  • Huber H (1991) Angiospermen. Leitfaden durch die Ordnungen und Familien der Bedecktsamer. Gustav Fischer, Stuttgart

    Google Scholar 

  • Irish VF, Kramer EM (1998) Genetic and molecular analysis of angiosperm flower development. Adv Bot Res 28: 197–230

    CAS  Google Scholar 

  • Iwatsuki K, Raven PH (1997) Evolution and diversification of land plants. Springer, Tokyo

    Google Scholar 

  • Joger U, Koch U (1995) Mammuts aus Sibirien. Hessisches Landesmuseum Darmstadt

    Google Scholar 

  • Jones DL (2000): Cycads of the world. — Ancient plants in today’s landscape. 3rd edn, New Holland, Sydney Auckland London Cape Town

    Google Scholar 

  • Jones WG, Hill KD, Allen JM (1995) Wollemia nobilis, a new living Australian genus and species in the Araucariaceae. Telopea 6: 172–176

    Google Scholar 

  • Jones TP, Rowe NP (eds, 1999) Fossil plants and spores — modern techniques. The Geological Society, London

    Google Scholar 

  • Kadereit JW (2002) Evolution und Systematik. In: Sitte P et al (Hrsg) Strasburger — Lehrbuch der Botanik für Hochschulen. 35. Aufl, S 521–866, Spektrum, Heidelberg Berlin

    Google Scholar 

  • Kaiser TM, Albert G, Bullwinkel V, Michalik P, Msuya C, Schulz E (2003) Mahenge — Ein Fenster zum Mitteleozän Afrikas. Naturwissenschaftliche Rundschau 56(10): 540–546

    Google Scholar 

  • Kandler O (1981) Archaebakterien und Phylogenie der Organismen. Naturwissenschaften 68: 183–192

    Article  PubMed  CAS  ISI  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The Closest Living Relatives of Land Plants. Science 294: 2351–2353

    Article  PubMed  CAS  ISI  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early diversification of land plants — A cladistic study. Smithsonian Institution Press, Washington

    Google Scholar 

  • Kerp H (1996) Der Wandel der Wälder im Laufe des Erdaltertums. Natur und Museum 126(12): 421–430

    Google Scholar 

  • Kerp H (2000) The modernization of landscapes during the Late Paleozoic-Early Mesozoic. In: Gastaldo RA, Di-Michele WA (eds) Phanerozoic Terrestrial Ecosystems. Paleontological Society Papers 6: 79–113

    Google Scholar 

  • Kerp H (2002) Atmospheric CO2 from fossil plant cuticles. Nature 415: 38

    Article  PubMed  ISI  Google Scholar 

  • Klein EM (2003) Earth science: Spread thin in the Arctic, News and Views. Nature 423: 932–933

    Article  PubMed  CAS  ISI  Google Scholar 

  • Knoll AH (1994) Neoproterozoic evolution. In: Bengston S (ed): Early life on Earth, pp 439–449, Columbia University Press, New York

    Google Scholar 

  • Koenigswald W von (2002) Lebendige Eiszeit — Klima und Tierwelt im Wandel. Theiss, Stuttgart

    Google Scholar 

  • Koenigswald E von, Storch G (Hrsg, 1998) Messel — ein Pompeji der Paläontologie. Thorbecke, Sigmaringen

    Google Scholar 

  • Köppen W, Wegener A (1924) Die Klimate der geologischen Vorzeit. Borntraeger, Berlin

    Google Scholar 

  • Kraus E (1995) Die Entwicklungsgeschichte der Kontinente und Ozeane. Akademie-Verlag, Berlin

    Google Scholar 

  • Krings M, Kerp H, Taylor TN, Taylor EL (2003) How Paleozoic vines and lianas got off the ground: on scrambling and climbing Late Carboniferous-Early Permian pteridosperms. Bot Rev 69: 204–224

    Google Scholar 

  • Krinner G, Mangerud J, Jakobsson M, Erucifix M, Ritz C, Svendsen JJ (2004) Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature 427: 429–432

    Article  PubMed  CAS  ISI  Google Scholar 

  • Kubitzki K, Bayer C (2003) Flowering plants. Dicotyledons. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Ligard S, Crane PR (1990) Angiosperm diversification and Cretaceous floristic trends: A comparison of palynofloras and leaf macrofloras. Palaeobiology 16: 77–93

    Google Scholar 

  • Lin J, Phipps Morgan J (1992) The spreading rate dependence on three-dimensional mid-ocean ridge gravity structure. Geophys Res Lett 19: 13–16

    Google Scholar 

  • Litt T (2000) Vegetation history and palaeoclimatology of the Eifel region as inferred from palaeobotanical studies of annually laminated sediments. Terra Nostra 2000/6: 259–263

    Google Scholar 

  • Luo ZX, Ji Q, Wible JR, Yuan C-X (2003) An early Cretaceous Tribosphenic Mammal and Metatherian Evolution. Science 302: 1934–1940

    Article  PubMed  CAS  ISI  Google Scholar 

  • Mader D (1992) Evolution of palaeoecology and palaeoenvironment of permian and triassic fluvial basins in Europe. 2 Bde, Stuttgart

    Google Scholar 

  • Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55: 1762–1780

    PubMed  Google Scholar 

  • Mägdefrau K (1968) Paläobiologie der Pflanzen. Gustav Fischer, Jena

    Google Scholar 

  • Mathews S, Donoghue MJ (1999) The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286: 947–950

    Article  PubMed  CAS  ISI  Google Scholar 

  • McGhee GR (1996) The Late Devonian mass extinction. Columbia University Press, New York

    Google Scholar 

  • Melkonian M (2001) Systematics and evolution of the algae. Progress Botany 62: 340–382

    CAS  Google Scholar 

  • Melville R (1983) Glossopteridae, Angiospermidae and the evidence for angiosperm origin. Botanical Journal of the Linnean Society 86: 279–323

    ISI  Google Scholar 

  • Meyen SV (1982): The Carboniferous and Permian floras of Angaraland (a synthesis). Biological Memoirs 7: 1–109

    Google Scholar 

  • Meyer-Berthand B, Scheckler SE, Wendt J (1999) Archaeopteris is the earliest known modern tree. Nature 396: 700–701

    Google Scholar 

  • Michael PJ et al (2001) The Arctic Mid-Ocean Ridge Expedition. Amore 2001 Seafloor spreading at the top of the world. Eos 82: F1097

    Google Scholar 

  • Michael PJ, Langmuir CH, Dick HJB, Snow JE, Goldstein SL, Graham DW, Lehnert K, Kurras G, Jokat W, Mühe R, Edmonds HN (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423: 956–961

    Article  PubMed  CAS  ISI  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive earth. Science 130: 245–251

    PubMed  CAS  ISI  Google Scholar 

  • Morgan JP (2003) The ultraslow difference. Nature 426: 401

    Article  PubMed  CAS  ISI  Google Scholar 

  • Morgan WJ (1972) Plate motions and deep mantle convection. Geol Soc Am Mem 132: 7–22

    Google Scholar 

  • Mosbrugger V (2003) Die Erde im Wandel — die Rolle der Biosphäre. Naturwiss Rundschau 56(7): 357–365

    Google Scholar 

  • Negendank JFW (2002) Klima im Wandel: Lesen in den Archiven der Natur. In: Hauser W (Hrsg): Klima. Das Experiment mit dem Planeten Erde. S 87–121, Theiss, Stuttgart

    Google Scholar 

  • Nentwig W, Bacher S, Beierkuhnlein C, Brandl R, Grabherr G (2003) Ökologie. Spektrum, Heidelberg

    Google Scholar 

  • Nicholson N & H (1996) Australian Rainforest Plants. 5th edn. National Library, Channon, NSW

    Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago

    Google Scholar 

  • Pott R (2003) Die Nordsee — Eine Natur-und Kulturgeschichte. Beck, München

    Google Scholar 

  • Qiu YL, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis P, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407

    Article  PubMed  CAS  ISI  Google Scholar 

  • Rademacher H (1998) Folgenschwerer Meteoriten-Einschlag im Pliozän? FAZ Nr 297 N2, Frankfurt

    Google Scholar 

  • Raven JA (1995) The early evolution of land plants: aquatic ancestors and atmospheric interactions. Botanical Journal of Scotland 47: 151–175

    Article  Google Scholar 

  • Rees PM, Gibbs MT, Ziegler AM, Kutzbach JE, Behling PJ (1999) Permian climates: evaluating model predictions using global palaeobotanical data. Geology 27: 891–894

    Article  ISI  Google Scholar 

  • Reid I, Jackson HR (1981) Oceanic spreading rate and crustal thickness. Mar Geophys Res 5: 165–172

    Google Scholar 

  • Remy W (1982) Lower Devonian gametophytes relation to phylogeny of land plants. Science 215: 1625–1627

    ISI  PubMed  Google Scholar 

  • Remy W, Remy D, Hass H (1997) Organisation, Wuchsformen und Lebensstrategien früher Landpflanzen. Bot Jahrb Syst 119: 509–562

    Google Scholar 

  • Retallack GJ, Dilcher DL (1981) Arguments for a glossopterid ancestry of angiosperms. Palaeobiology 7: 54–67

    Google Scholar 

  • Reymanowna M (1973) The Jurassic Flora from Grojec Near Krakow in Poland Part II: Caytoniales and the Anatomy of Caytonia. Acta Palaeobotanica 14: 46–87

    Google Scholar 

  • Roth-Nebelsick A, Grimm G, Mosbrugger V, Hass H, Kerp H (2000) Morphometric analysis of Rhynia and Asteroxylon: Testing hypotheses regarding the functional aspects of stele geometry and stelar evolution in early land plants. Paleobiology 26: 405–418

    ISI  Google Scholar 

  • Salters VJM, Dick HJB (2002) Mineralogy of the mid-ocean ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418: 68–72

    Article  PubMed  CAS  ISI  Google Scholar 

  • Schidlowski M (1983) Evolution of photoautotrophy and early atmospheric oxygen levels. Precambrian Research 20: 319–335

    CAS  ISI  Google Scholar 

  • Schmincke HU (2000) Vulkanismus. 2. Aufl, Wiss Buchgesellschaft Darmstadt

    Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallion S, Lupia R (2004) Ferns diversed in the shadow of angiosperms. Nature 428: 553–557

    Article  PubMed  CAS  ISI  Google Scholar 

  • Schopf JM (1992) The oldest fossils and what they mean. In: Schopf JM (ed): Major events in the history of life, pp 29–63, Jones & Bartlett, Boston/MA

    Google Scholar 

  • Schultka S (2003) Cooksonia — Zur Morphologie einer frühen Landpflanze aus dem Unterdevon der Eifel. Cour Forsch Inst Senckenberg 241: 7–17, Frankfurt

    Google Scholar 

  • Skinnek BJ, Porter SC (2000) The Dynamic Earth — An Introduction to Physical Geology. 4th edn., John Wiley & Sons, New York Chichester Weinheim Brisbane Singapore Toronto

    Google Scholar 

  • Sleep N (2001) Oxygenating the atmosphere. Nature 410: 317–319

    Article  PubMed  CAS  ISI  Google Scholar 

  • Soltis PS, Soltis DE, Chase MW (1999) Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature 402: 402–404

    Article  PubMed  CAS  ISI  Google Scholar 

  • Stanley SM (1989) Earth and life through time. 2nd edn, Freeman, New York

    Google Scholar 

  • Stewart WN, Rothwell GW (1993) Palaebotany and the Evolution of Plants. 2nd edn, Cambridge University Press, Cambridge

    Google Scholar 

  • Storch V, Welsch U, Wink M (2001) Evolutionsbiologie. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Strobach K (1991) Unser Planet Erde. Ursprung und Dynamik. Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Sun G, Dilcher DL, Zheng S, Zhou Z (1998) In Search of the First Flower: a Jurassic angiosperm, Archaefructus, from Northeast China. Science 282: 1692–1695

    PubMed  CAS  ISI  Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296: 899–904

    PubMed  CAS  ISI  Google Scholar 

  • Svensen H, Planke S, Malte-Sörenssen A, Jamtveit B, Myklebust R, Eiden T, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429: 542–545

    Article  PubMed  CAS  ISI  Google Scholar 

  • Taylor TN, Remy W, Hass H (1992) Parasitism in a 400-million-year-old green alga. Nature 357: 493–494

    Article  ISI  Google Scholar 

  • Taylor TN, Taylor EL (1993) The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Taylor TN, Remy W, Hass H (1994): Allomyces in the Devonian. Nature 367: 601

    Article  ISI  Google Scholar 

  • Taylor TN, Hass H, Remy W, Kerp H (1995) The oldest fossil lichen. Nature 378: 244

    Article  CAS  ISI  Google Scholar 

  • Thomas HH (1925) The Caytoniales; A New Group of Angiospermous Plants from the Jurassic Rocks of Yorkshire. Phil Trans Roy Soc London 213: 299–363

    Google Scholar 

  • Thompson PW (1953) Zur Entstehung und Ausbreitung der Angiospermen im Mesophytikum. Paläntol Zschr 27: 47–51

    Google Scholar 

  • Thorne RF (2000) The classification and geography of flowering plants: dicotyledons of the class Angiospermae. Bot Rev 66: 441–467

    Google Scholar 

  • Wallace AR (1860) On the zoological geography of the Malay archipelago. J Linn Soc 14: 172–184, London

    Google Scholar 

  • Walter H, Straka H (1970) Arealkunde — Floristisch-historische Geobotanik. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Walter MR (1994) Stromatolites: the main geological source of information on the evolution of the early benthos. In: Bengston S (ed): Early life on Earth, pp 278–286, Columbia University Press, New York

    Google Scholar 

  • Ward PD (1998) Ausgerottet oder ausgestorben? Warum die Mammuts die Eiszeit nicht überleben konnten. Birkhäuser, Basel Boston Berlin

    Google Scholar 

  • Wasser SP (2004) Evolutionary theory and processes: modern horizons. Kluwer, Dordrecht

    Google Scholar 

  • Wegener A (1912) Die Entstehung der Kontinente. Geologische Rundschau 3: 276–292

    Article  Google Scholar 

  • Weyland H, Greifeld G (1953) Über Struktur bietende Blätter und pflanzliche Mikrofossilien aus dem untersenonen Ton der Gegend um Quedlinburg. Palaeontographica 95: 30–52

    Google Scholar 

  • White ME (1990) The Flowering of Gondwana — The 400 Million Year History of Australia’s Plants. Princeton University Press, Princeton/NJ

    Google Scholar 

  • Whitmore TC (1981) Wallace’s line and plate tectonics. Clarendon, Oxford

    Google Scholar 

  • Wichard W, Weischat W (2004) „Im Bernsteinwald“. Gerstenberg, Hildesheim

    Google Scholar 

  • Widdel F (2002) Mikroorganismen des Meeres — Katalysatoren globaler Stoffkreisläufe. Bayerische Akademie der Wissenschaften: Rundgespräche der Kommission für Ökologie 23: 67–83, München

    Google Scholar 

  • Wilde V (2003) Studies on fossil and extinct plants and floras. Courier Forschungsinstitut Senckenberg 241: 1–334, Schweizerbarth’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, New York

    Google Scholar 

  • Willis KJ, Kleczkowski A, Briggs KM, Gilligan CA (1999) The role of sub-Milankovitch climatic forcing in the initiation of the Northern Hemisphere glaciation. Science 285: 568–571

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wing SL, Hickey LJ, Swisher CC (1993) Implications of an exceptional fossil flora for Late Cretaceous vegetation. Nature 363: 342–344

    Article  ISI  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in globale climate 65 Ma to present. Science 292: 686–695

    PubMed  CAS  ISI  Google Scholar 

  • Zachos JC, Wara MW, Bohaty S, Delaney ML, Petrizzo MR, Brill A, Bralower TJ, Premoli Silva I (2003) A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum. Published online October 23, 2003; 10.1126/science.1090110

    Google Scholar 

  • Zenker JC (1833) Beiträge zur Naturgeschichte der Urwelt. Organische Reste (Petrefacten) aus der Altenburger Braunkohlenformation, dem Blankenburger Quadersandstein, jenaischen bunten Sandstein und böhmischen Bergangsgebirge. Jena

    Google Scholar 

  • Ziegler AM (1990) Phytogeographic patterns and continental configurations during the Permian period. In: McKerrow WS, Scotese CR (eds) Palaeozoic, Palaeogeography and Biogeography, pp 363–379, Geological Society, London

    Google Scholar 

  • Ziegler AM, Parrish J, Yao ED et al (1993) Early Mesozoic phytogeography and climate. In: Palaeoclimates and their modelling with special reference to the Mesozoic Era. Philosophical Transactions of the Royal Society of London, Ser B, 341

    Google Scholar 

  • Zimmermann W (1959) Die Phylogenie der Pflanzen. 2. Aufl, Fischer, Stuttgart

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Bildung der Kontinente und Evolution — eine Reise durch Raum und Zeit. In: Allgemeine Geobotanik. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27527-4_2

Download citation

Publish with us

Policies and ethics