Skip to main content

Theory and Application of Generalized Ellipsometry

  • Chapter
Handbook of Ellipsometry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.8 Further Reading and References

9.8.1 General Reading

  1. A.C. Boccara, C. Pickering and J. Rivory, Eds. Spectroscopic Ellipsometry (Elsevier, Amsterdam, 1993).

    Google Scholar 

  2. R.W. Collins, D.E. Aspnes and E.A. Irene, Eds. Spectroscopic Ellipsometry 1997 (Elsevier, Lausanne, 1997).

    Google Scholar 

  3. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (North-olland, Amsterdam, 1977).

    Google Scholar 

  4. H.A. Macleod, Thin Film Optical Filters (Macmillan, New York, 1986).

    Google Scholar 

  5. M. Mansuripur, The Physical Principles of Magneto-optical Recording (University Press, Cambridge, 1995).

    Google Scholar 

  6. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  7. A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific, Singapore, 1994).

    Google Scholar 

  8. A. Lakhtakia, Natural Optical Activity, SPIE Milestone Series Vol. MS15.

    Google Scholar 

  9. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1995).

    Google Scholar 

  10. G.E. Pikus and G.L. Bir, Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York, 1974).

    Google Scholar 

  11. S. Adachi, Physical Properties of III-V Semiconductor Compounds (Wiley-Interscience, New York, 1992).

    Google Scholar 

  12. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipies in C (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  13. W.A. McGahan, “Magneto-optical applications”, in Intermetallic Compounds, Vol. 2, edited by J.H. Westbrook and R.L. Fleischer, p. 435–451, Ch. 19 (John Wiley&Sons Ltd, London, 1994).

    Google Scholar 

  14. International Tables for Crystallography, edited by T. Hahn (Reidel, Dordrecht, 1983), Vol. A.

    Google Scholar 

  15. E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 798–804.

    Google Scholar 

  16. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1965).

    Google Scholar 

  17. P. Yeh, Optical Waves inLlayered Media, Wiley Series in Pure and Applied Optics (Wiley, New York, 1988).

    Google Scholar 

  18. J.A. Kong, Electromagnetic Wave Theory (John Wiley & Sons., New York, 1990).

    Google Scholar 

  19. L.D. Landau and E.M. Lifschitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960).

    Google Scholar 

  20. F. Agulló-Lopez, J.M. Cabrera, F. Agulló-Rueda, Electrooptics (Academic Press, San Diego, 1994).

    Google Scholar 

9.8.2 Numbered References

  1. R.M.A. Azzam and N.M. Bashara, “Generalized Ellipsometry for surfaces with directional preference: application to diffraction gratings”, J. Opt. Soc. Am., 62, 1521–1523 (1972).

    Google Scholar 

  2. R.M.A. Azzam and N.M. Bashara, “Polarization transfer function of a biaxial system as a bilinear transformation”, J. Opt. Soc. Am. A, 62, 502–510 (1972).

    Google Scholar 

  3. P.S. Hauge, “Generalized rotating-compensator ellipsometry”, Surf. Sci., 56, 148–160 (1976).

    CAS  Google Scholar 

  4. D.J. DeSmet, “Generalized ellipsometry and the 4 × 4 matrix formalism”, Surf. Sci., 56, 293–306 (1976).

    CAS  Google Scholar 

  5. M. Elshazly-Zaghloul, R.M.A. Azzam and N.M. Bashara, “Explicit solutions for the optical properties of a uniaxial crystal in generalized ellipsometry”, Surf. Sci., 96, 41–53 (1980).

    Google Scholar 

  6. H. Wöhler, M. Fritsch, G. Haas and D.A. Mlynski, “Characteristic matrix method for stratified anisotropic media: optical properties of special configurations”, J. Opt. Soc. Am. A, 8, 536–540 (1991).

    Google Scholar 

  7. K. Eidner, “Light propagation in stratified anisotropic media: orthogonality and symmetry properties of the 4 × 4 matrix formalism”, J. Opt. Soc. Am. A, 6, 1657–1660 (1989).

    CAS  Google Scholar 

  8. M. Schubert, B. Rheinländer, J.A. Woollam, B. Johs and C. Herzinger, “Extension of Rotating Analyzer Ellipsometry to Generalized Ellipsometry: Determination of the dielectric function tensor from uniaxial TiO2”, J. Opt. Soc. Am. A, 13, 875–883 (1996).

    CAS  Google Scholar 

  9. G.E. Jellison, Jr. And F.A. Modine, “Two-modulator generalized ellipsometry: theory”, Appl. Optics, 36, 8184–8189 (1998); “Two-modulator generalized ellipsometry: experiment and calibration”, Appl. Optics, 36, 8190–8198 (1998).

    Google Scholar 

  10. D.W. Thompson, M.J. DeVries, T.E. Tiwald and J.A. Woollam, “Determination of optical anisotropy in calcite from ultraviolet to mid-infrared by generalized ellipsometry”, Thin Solid Films, 313–314, 341–346 (1998).

    Google Scholar 

  11. B. Lecourt, D. Blaudez and J.M. Turlet, “Specific approach of generalized ellipsometry for the determination of weak in-plane anisotropy: application to Langmuir-Blodgett ultrathin films”, J. Opt. Soc. Am. A, 10, 2769–2782.

    Google Scholar 

  12. P.I. Rovira, R.A. Yarussi, R.W. Collins, R. Messier, V.C. Venugopal, A. Lakhtakia, K. Robbi and M.J. Brett, “Transmission ellipsometry of a thin-film helicoidal bianisotropic medium”, Appl. Phys. Lett., 71, 1180–1182 (1997).

    CAS  Google Scholar 

  13. A. En Naciri, L. Johann and R. Kleim, “Spectroscopic Generalized Ellipsometry based on Fourier analysis”, Appl. Opt., (1 Aug.), 4802–4811 (1999).

    Google Scholar 

  14. A. Berger and M.R. Pufall, “Generalized magneto-optical ellipsometry”, Appl. Phys. Lett., 71, 965–967 (1997).

    CAS  Google Scholar 

  15. M. Schubert, B. Rheinländer, C. Cramer, H. Schmiedel, J.A. Woollam, B. Johs and C.M. Herzinger, “Generalized Transmission Ellipsometry for twisted biaxial dielectric media: Application to chiral liquid crystals”, J. Opt. Soc. Am. A, 13, 1930–1940 (1996).

    CAS  Google Scholar 

  16. J.-D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krauß and V. Krämer, “Birefringence and reflectivity of single-crystal CdAl2Se4 by generalized ellipsometry”, Phys. Rev. B, 57, 7037–7042 (1998).

    CAS  Google Scholar 

  17. M. Schubert, T. Hofmann, B. Rheinländer, I. Pietzonka, T. Saß, V. Gottschalch, J.A. Woollam, “Near-band-gap CuPt order — induced birefringence in AL0.48Ga0.52InP2”, Phys. Rev. B, 60, 16618–16643 (1999).

    CAS  Google Scholar 

  18. S. Zangooie, R. Jansson and H. Arwin, “Ellipsometric characterization of anisotropic porous silicon Fabry-Pérot filters and investigation of temperature effects on capillary condensation efficiency”, J. Appl. Phys., 86, 850–858 (1999).

    CAS  Google Scholar 

  19. J.F. Elman, J. Greener, C.M. Herzinger and B. Johs, “Characterization of biaxially-stretched plastic films by generalized ellipsometry”, Thin Solid Films, 313–314, 816–820 (1998).

    Google Scholar 

  20. C.H. Yan and H. Yao, “Anisotropic optical responses of sapphire (α-Al2O3) single crystals”, J. Appl. Phys., 85, 6717–6722 (1999).

    Google Scholar 

  21. G.E. Jellison, Jr., F.A. Modine and L.A. Boatner, “The measurement of the optical functions of uniaxial materials using two-modulator generalized ellipsometry: rutile (TiO2)”, Opt. Lett., 22, 1808–1810 (1997).

    CAS  Google Scholar 

  22. G.E. Jellison, Jr. J.O. Ramey and L.A. Boatner, “Optical Functions of BiI3 as measured by generalized ellipsometry”, Phys. Rev. B, 59, 9718–9721 (1999).

    CAS  Google Scholar 

  23. G.E. Jellison, Jr. And L.A. Boatner, “Optical Functions of uniaxial ZnO determined by generalized ellipsometry”, Phys. Rev. B, 58, 3586–3589 (1998).

    CAS  Google Scholar 

  24. Guide to using WVASE (J.A. Woollam, Lincoln, 1995)

    Google Scholar 

  25. J.L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropic slabs”, IEEE Transaction on Microwave Theory and Techniques, 40, 1870–1878 (1992).

    Google Scholar 

  26. Y. Wenyen and W. Wenbing, “The transmission properties of stratified chiroferrite media with obliquely incident plane waves”, Int. J. Infrared Millim. Waves, 15, 593–603 (1994).

    Google Scholar 

  27. J.S. Nefedov, “Microstrip slow-wave structures on the bianisotropic substrate”, Electromagnetics, 17, 343–360 (1997).

    Google Scholar 

  28. S.B. Borisov, N.N. Dadoenkova and I.L. Lyubchanskii, “Normal electromagnetic Waves in gyrotropic magnetooptic layered structures”, Opt. Spectrosc., 74, 670–682 (1993).

    Google Scholar 

  29. A. Lakhtakia and W. Weiglhofer, “On light propagation in helicoidal bianisotropic mediums”, Proc. R. Soc. Lond. A, 448, 419–437 (1995).

    Google Scholar 

  30. A. Lakhtakia and W. Weiglhofer, “Further results on light propagation in helicoidal bianisotropic mediums: oblique propagation”, Proc. R. Soc. Lond. A, 453, 93–105 (1997).

    CAS  Google Scholar 

  31. W.S. Weiglhofer and A. Lakhatakia, “Wave propagation in a continuously twisted biaxial dielectric medium parallel to the helical axis”, Optik, 96, 179–183 (1994).

    Google Scholar 

  32. A. Lakhatakia and W.S. Weiglhofer, “Simple and exact analytic solution for oblique propagation in a cholesteric liquid crystal”, Microwave and Opt. Techn. Lett., 12, 245–247 (1996).

    Google Scholar 

  33. C.R. Pidgeon, “Free carrier optical properties of semiconductors”, Handbook on Semiconductors, Vol. 2, ed. By M. Balkanski (North-Holland, Amsterdam, 1980), pp. 223–328.

    Google Scholar 

  34. M. Schubert, T.E. Tiwald and J.A. Woollam, “Explicit solutions for the optical properties of arbitrary magneto-optic materials in generalized ellipsometry”, Appl. Opt., 33, 177–187 (1999).

    Google Scholar 

  35. D.W. Berreman, “Optics in stratified and anisotropic media: 4 × 4 matrix formulation”, J. Opt. Soc. Am., 62, 502–510 (1972).

    CAS  Google Scholar 

  36. H.G. Booker, “Oblique propagation of electromagnetic waves in a slowly-varying non-isotropic medium”, Proc. Roy. Soc. A, 155, 235–257 (1936).

    Google Scholar 

  37. H. Wöhler, M. Fritsch, G. Haas and D.A. Mlynski, “Faster 4 × 4 matrix method for uniaxial inhomogeneous media”, J. Opt. Soc. Am. A, 5, 1554–1557 (1988).

    Google Scholar 

  38. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems”, Phys. Rev. B, 53, 4265–4274 (1996).

    CAS  Google Scholar 

  39. See P.J. Lin-Chung and S. Teitler, “4 × 4 matrix formalism for optics in stratified anisotropic media”, J. Opt. Soc. Am. A, 1, 703–705 (1984), for comparison between the 4 × 4 matrix formalism developed respectively by Berreman (Ref. 35) and by Yeh (Ref. 41).

    Google Scholar 

  40. M. Schubert, “Generalized Ellipsometry and complex optical systems”, Thin Solid Films, 313–314, 323 (1998).

    Google Scholar 

  41. P. Yeh, “Optics of anisotropic layered media: A new 4 × 4 matrix algebra”, Surf. Sci., 96, 41–53 (1980).

    CAS  Google Scholar 

  42. M. Mansuripur, “Analysis of multilayer thin film structures containing magneto-optic and anisotropic media at oblique incidence using 2 × 2 matrices”, J. Appl. Phys., 67, 6466–6480 (1990).

    Google Scholar 

  43. W. Xu, L.T. Wood and T.D. Golding, “Optical degeneracies in anisotropic layered media: Treatment of singularities in a 4 × 4 matrix formalism”, Phys. Rev. B, 61, 1740–1743 (2000).

    CAS  Google Scholar 

  44. E. Toussaere and J. Zyss, “Ellipsometry and reflectance of inhomogeneous and anisotropic media: a new computationally efficient approach”, Thin Solid Films, 234, 416–438 (1993).

    Google Scholar 

  45. S. Visnovsky, “Magneto-optical ellipsometry”, Czech. J. Phys. B, 36, 625–650 (1986).

    Google Scholar 

  46. S. Visnovsky, M. Nyvlt, V. Prosser, R. Lopusník, R. Urban, J. Ferré, G. Pénissard, D. Renard and R. Krishnan, “Polar magneto-optics in simple ultrathin-magneticfilm structures”, Phys. Rev. B, 52, 1090–1106 (1995).

    CAS  Google Scholar 

  47. C. Gu and P. Yeh, “Extended Jones matrix method II”, J. Opt. Soc. Am. A, 10, 966–973 (1993) and references therein.

    Google Scholar 

  48. D.W. Berreman and T.J. Scheffer, “Bragg reflection of light from single-domain cholesteric liquid-crystal films”, Phys. Rev. Lett., 25, 577–581 (1970).

    CAS  Google Scholar 

  49. K. Eidner, G. Mayer, M. Schmidt and H. Schmiedel, “Optics in stratified media-The use of optical eigenmodes of uniaxial crystals in the 4 × 4-matrix formalism”, Mol. Cryst. Liq. Cryst., 172, 191–200 (1989).

    Google Scholar 

  50. D.L. Jaggard and X. Sun, “Theory of chiral multilayers”, J. Opt. Soc. Am. A, 9, 804–813 (1992).

    CAS  Google Scholar 

  51. S. Bassani, C.H. Papas and N. Engheta, “Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab”, J. Opt. Soc. Am. A, 5, 1450–1459 (1988).

    Google Scholar 

  52. A. Zunger and S. Mahajan, in Handbook of Semiconductors, 2nd. Ed., edited by S. Mahajan (Elsevier, Amsterdam, 1995) Vol. 3, p.1399.

    Google Scholar 

  53. A. Zunger, “Spontaneous atomic ordering in semiconductor alloys: causes, carriers, and consequencies”, MRS Bull., 22, 20–26 (1997).

    CAS  Google Scholar 

  54. G.B. Stringfellow, “Order and surface processes in III–V semiconductor alloys”, MRS Bull., 22, 27–32 (1997).

    CAS  Google Scholar 

  55. S.-H. Wei and A. Zunger, “Optical properties of zinc-blende semiconductor alloys: effects of epitaxial strain and atomic ordering” Phys. Rev. B, 49, 14337 (1994).

    CAS  Google Scholar 

  56. D.E. Aspnes, “Approximate solution of ellipsometric equations for optically biaxial materials”, J. Opt. Soc. Am., 70, 1275–1277.

    Google Scholar 

  57. B.O. Seraphin and N. Bottka, Phys. Rev., 145, 628 (1966).

    CAS  Google Scholar 

  58. T.E. Tiwald and M. Schubert, “Measurement of rutile TiO2 dielecric tensor from 0.148 to 33 μ using generalized ellipsometry”, Proc. SPIE, Vol 4103, 19 (2000).

    CAS  Google Scholar 

  59. M. Schubert, T.E. Tiwald and CM. Herzinger, “Infrared dielectric anisotropy and phonon modes of sapphire”, Phys. Rev. B, 61, 8187–8201 (2000).

    CAS  Google Scholar 

  60. M. Schubert, B. Rheinländer, E. Franke, H. Neumann, J. Hahn, M. Röder and F. Richter, “Anisotropy of boron nitride thin-film reflectivity spectra by generalized ellipsometry”, Appl. Phys. Lett., 70, 1819 (1997).

    CAS  Google Scholar 

  61. M. Schubert, B. Rheinländer, E. Franke, H. Neumann, T.E. Tiwald, J.A. Woollam, J. Hahn and F. Richter, “Infrared optical properties of mixed-phase thin films studied by spectroscopic ellipsometry and boron nitride as an example”, Phys. Rev. B, 56, 13306–13313 (1997).

    CAS  Google Scholar 

  62. A. Kasic, M. Schubert, S. Einfeldt, D. Hommel, T.E. Tiwald, “Free-carrier and phonon properties of n-and p-type hexagonal GaN films measured by infrared ellipsometry”, Phys. Rev. B, 62, 7365–7377 (2000).

    CAS  Google Scholar 

  63. M. Schubert, A. Kasic, T.E. Tiwald, J. Off, B. Kuhn, F. Scholz, “Optical phonons and free-carrier effects in MOVPE grown AlxGal-xN measured by infrared ellipsometry”, MRS Internet J. Nitride Semicond. Res., 4, 11 (1999).

    Google Scholar 

  64. A. En Naciri, L. Johann, R. Kleim, M. Sieskind and M. Amann, “Spectroscopic Ellipsometry of anisotropic materials: application to the optical constants of HgI2”, Appl. Opt. (lFebr.), 647–654 (1999).

    Google Scholar 

  65. A. Berger and M.R. Pufall, “Quantitative vector magnetometry using generalized magneto-optical ellipsometry”, J. Appl. Phys., 85, 4583–4585 (1999).

    CAS  Google Scholar 

  66. T. Hofmann, V. Gottschalch, and M. Schubert, “Far-infrared dielectric anisotropy and phonon modes in spontaneously CuPt ordered Ga0.52In0.48P”, unpublished.

    Google Scholar 

  67. See for example W.J. Tropf and M.E. Thomas, Aluminum Oxide (α-Al2O3) revisited, in E.D. Palik, Handbook of Optical Constants (Academic Press, New York, 1998) Vol. III, p. 653; E.D. Palik, Optical Properties for the Materials in HOC I and HOC II, ebenda, Vol. II, p. 313; F. Gervais, Aluminum Oxide, ebenda, Vol. II, p. 177, and references therein.

    Google Scholar 

  68. J.W. Orton and C.T. Foxon, “Group III nitride semiconductors for short wavelength light-emmiting devices”, Rep. Prog. Phys., 61, 1–75 (1998).

    CAS  Google Scholar 

  69. A.K. Harman, S. Ninomiya and S. Adachi, “Optical constants of sapphire (α-Al2O3) single crystals”, J. Appl. Phys., 76, 8032–8036 (1994).

    CAS  Google Scholar 

  70. A.C. DeFranzo and B.G. Pazol, “Index of refraction measurements on sapphire at low temperatures and visible wavelength”, Appl. Opt., 32, 2224–2234 (1993).

    CAS  Google Scholar 

  71. S.-H. Wei, A. Franceschetti and A. Zunger, “E 1, E 2, and E 0’ transitions and pressure dependence in ordered Ga0.5In0.5P”, Phys. Rev. B, 51, 13097–13102 (1995).

    CAS  Google Scholar 

  72. S.H. Wei, D.B. Laks and A. Zunger, “Dependence of the optical properties of semiconductor alloys on the degree of long-range order”, App. Phys. Lett., 62, 1937–1939 (1993).

    CAS  Google Scholar 

  73. S.-H. Wei and A. Zunger, “Fingerprints of CuPt ordering in III-V semiconductor alloys: valence-band splitting, band-gap reduction, and x-ray structure factors”, Phys. Rev. B, 57, 8983–8988 (1998).

    CAS  Google Scholar 

  74. C.W. Higginbotham, M. Cardona and F.H. Pollak, “Intrinsic piezobirefringence of Ge, Si, and GaAs”, Phys. Rev., 184, 821–829 (1969).

    CAS  Google Scholar 

  75. G. Heppke and F. Oestreicher, “Determination of the cholesteric screw sense”, Mol. Cryst. Liq. Cryst. (Letters), 41, 245–249 (1978).

    CAS  Google Scholar 

  76. R. Cano, “Optical rotary power of cholesteric liquid crystals”, Bull. Soc. Franc. Mineral.Crist., 90, 333–351 (1967).

    CAS  Google Scholar 

  77. C. Cramer, H. Binder, M. Schubert, B. Rheinländer and H. Schmiedel, “Optical properties of microconfined liquid crystals”, Mol. Cryst. Liq. Cryst., 282, 395–405 (1996).

    CAS  Google Scholar 

  78. I. Haller, “Thermodynamic and static properties of liquid crystals”, Prog. Sol. State Chem., 10, 103–112 (1975); see also: St.Limmer, “Physical principles underlying the experimental methods for studying the orientational order of liquid crystals”, Fortschr. Phys., 37, 879–931 (1989).

    Google Scholar 

  79. S.-T. Wu, “A semiempirical model for liquid-crystal refractive index dispersions”, J. App. Phys., 69, 2080–2087 (1991).

    CAS  Google Scholar 

  80. W.A. McGahan, P. He and J.A. Woollam, “Optical and magneto-optical characterization of thin films”, Appl. Phys. Commun., 11, 375–401 (1992).

    CAS  Google Scholar 

  81. W.A. McGahan and J.A. Woollam, “Magneto-optics of mutilayer systems”, Appl. Phys. Commun., 9, 1–25 (1989).

    CAS  Google Scholar 

  82. K.W. Wierman, J.N. Hilfiker, R.F. Sabiryanov, S.S. Jaswal, R.D. Kirby and J.A. Woollam, “Optical and Magneto-optical constants of MnPt3”, Phys. Rev. B, 55, 3093–3099 (1997).

    CAS  Google Scholar 

  83. J.M. Floraczek and E. Dan Dahlberg, “Detecting two magnetization components by the magneto-optical Kerr effect”, J. Appl. Phys., 67, 7520–7525 (1990).

    Google Scholar 

  84. X. Gao, D.W. Glenn, S. Heckens, D. W. Thompson and J.A. Woollam, “Spectroscopic ellipsometry and magneto-optic Kerr effects in Co/Pt multilayers”, J. Appl. Phys., 82, 4525–4531 (1997); X.Gao, D.W. Thompson and J.A. Woollam, “Determination of the interfacial magneto-optical effects in Co/Pt multilayer structures”, Appl. Phys. Lett., 70, 3203–3205 (1997).

    CAS  Google Scholar 

  85. A. Mascarenhas, S. Kurtz, A. Kibbler and J.M. Olson, “Polarized band-edge photoluminescence and ordering in Ga0.52In0.48P”, Phys. Rev. Lett., 63, 2108–2111 (1989).

    CAS  Google Scholar 

  86. M. Schubert, B. Rheinländer and V. Gottschalch, “Band-gap reduction and valence band splitting in spontaneously ordered GaInP2”, Solid State Commun., 95, 723–727 (1995).

    CAS  Google Scholar 

  87. M. Schubert, B. Rheinländer, E. Franke, I. Pietzonka, J. Škriniarová and V. Gottschalch, “Direct-gap reduction and valence band splitting of ordered indirect-gap AlInP2 studied by dark-field spectroscopy”, Phys. Rev. B, 54, 17616 (1996).

    CAS  Google Scholar 

  88. M. Schubert, J.A. Woollam, G. Leibiger, B. Rheinländer, I. Pietzonka, T. Saß, and V. Gottschalch, “Isotropic optical constants of highly-disordered AlxGa1−x InP2 (0 ≤ x ≤ 1)”, J. Appl. Phys., 86, 2025–2035 (1999).

    CAS  Google Scholar 

  89. C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation”, J. Appl. Phys., 83, 3323–3336 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 William Andrew, Inc.

About this chapter

Cite this chapter

Schubert, M. (2005). Theory and Application of Generalized Ellipsometry. In: Tompkins, H.G., Irene, E.A. (eds) Handbook of Ellipsometry. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-27488-X_9

Download citation

Publish with us

Policies and ethics