Skip to main content

Ellipsometry in Life Sciences

  • Chapter
Handbook of Ellipsometry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12.9 References

  1. L. Tronstad, “The validity of Drude’s optical method of investigating transparent films on metals,” Trans. Far. Soc, 31, 1151–1156 (1935).

    Article  CAS  Google Scholar 

  2. A. Rothen and C. Mathot, “Immunological reactions carried out at a liquidsolid interface,” Helvetica Chimica Acta, 54, 1208–1217 (1971).

    Article  CAS  Google Scholar 

  3. L. Vroman, “Surface activity in blood clotting,” in Blood clotting enzymology, (W.H. Seegers, Ed.) Academic Press, New York, 1967, pp. 279–323.

    Google Scholar 

  4. G. Poste and C. Moss, “The study of surface reactions in biological systems by ellipsometry,” Prog. Surf. Sci., 2, 139–232 (1972).

    Article  CAS  Google Scholar 

  5. M.K. Debe, “Optical probes of organic thin films: Photons-in, photons-out,” Prog. Surf. Sci., 24, 1–282 (1987).

    Article  CAS  Google Scholar 

  6. H. Arwin, “Spectroscopic ellipsometry and biology: recent developments and challenges,” Thin Solid Films, 313–314, 764–774 (1998).

    Article  Google Scholar 

  7. H. Arwin and D.E. Aspnes, “Determination of optical properties of thin organic films by spectroellipsometry,” Thin Solid Films, 138, 195–207 (1986).

    Article  CAS  Google Scholar 

  8. H. Arwin, “Ellipsometry on thin organic layers of biological interest: characterization and applications,” Thin Solid Films, 377–378, 48–56 (2000).

    Article  Google Scholar 

  9. H. Arwin, “Ellipsometry,” in Physical Chemistry of Biological Interfaces (A Baszkin and W Norde, Eds.) Marcel Dekker (2000) pp. 577–607.

    Google Scholar 

  10. U. Jönsson, M. Malmqvist, and I. Rönnberg, “Adsorption of Immunoglobulin G, protein A, and fibronectin in the submonolayer region evaluated by a combined study of ellipsometry and radiotracer techniques,” J. Coll. Int. Sci., 103, 360–372 (1985).

    Article  Google Scholar 

  11. J. Benesch, A. Askendahl, and P. Tengvall, “Quantification of adsorbed human serum albumin at solid interfaces: a comparision between radioimmunoassay (RIA) and simple null ellipsometry,” Colloids and Surfaces B, 18, 71–81 (2000).

    Article  CAS  Google Scholar 

  12. P.A. Cuypers, W.Th. Hermens, and H.C. Hemker, “Ellipsometry as a tool to study protein films at liquid-solid interfaces,” Anal. Biochem., 84, 56–57 (1978).

    Article  CAS  Google Scholar 

  13. J. Mårtensson, H. Arwin, H. Nygren, and I. Lundström, “Adsorption and optical properties of ferritin layers on gold studied with spectroscopic ellipsometry,” J. Coll. Int. Sci., 174, 79–85 (1995).

    Article  Google Scholar 

  14. H. Arwin, “Optical properties of thin layers of bovine serum albumin, γ-globulin, and Hemoglobin,” Appl. Spectr., 40, 313–318 (1986).

    Article  CAS  Google Scholar 

  15. J. Mårtensson, H. Arwin, I. Lundström, and Th. Ericson, “Adsorption of lactoperoxidase on hydrophilic and hydrophobic silicon dioxide surfaces: an ellipsometric study,” J. Coll. Int. Sci., 155, 30–36 (1993).

    Article  Google Scholar 

  16. D. Ducharme, A. Tessier, and S.C. Russev, “Simultaneous thickness and refractive index determination of monolayers deposited on an aqueous subphase by null ellipsometry,” Langmuir, 17, 7529–7534 (2001).

    Article  CAS  Google Scholar 

  17. D.A.G. von Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Annal. der Physik, 5, 636–679 (1935).

    Google Scholar 

  18. J.A. de Feijter, J. Benjamins, and F.A. Veer, “Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface,” Biopolymers, 17, 1759–1772 (1978).

    Article  Google Scholar 

  19. P.A. Cuypers, J.W. Corsel, M.P. Janssen, J.M.M. Kop, W.Th. Hermens, and H.C. Hemker, “The adsorption of prothrombin to phosphatidylserine multilayers quantitated by ellipsometry,” J. Biol. Chem., 258, 2426–2431 (1983).

    CAS  Google Scholar 

  20. M. Stenberg and H. Nygren, “The use of the isoscope ellipsometer in the study of adsorbed proteins and biospecific binding reactions,” J. de Phys, Colloque, C10, 83–86 (1983).

    Google Scholar 

  21. M. Stenberg, T. Sandström, and L. Stilbert, “A new ellipsometric method for measurements on surfaces and surface layers,” Mat. Sci. and Eng., 42, 65–69 (1980).

    Article  CAS  Google Scholar 

  22. P.G. Snyder, Y-M. Xiong, J.A. Woollam, G.A. Al-Jumaily, and F.J. Gagliardi, “Graded refractive index silicon oxynitride thin film characterized by spectroscopic ellipsometry,” J. Vac. Sci. Technol. A, 10, 1462–1466 (1992).

    Article  CAS  Google Scholar 

  23. S. Zangooie, R. Jansson, and H. Arwin, “Electrochemical tailoring and optical investigation of advanced refractive index profiles in porous silicon layers,” Mat. Res. Soc. Symp. Proc., 557, 195–200 (1999).

    CAS  Google Scholar 

  24. S. Zangooie, R. Jansson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption and liquid penetration,” J. Vac. Sci. Technol. A, 16, 2901–2912 (1998).

    Article  CAS  Google Scholar 

  25. S. Zangooie, P.O.Å. Persson, J.N. Hilfiker, L. Hultman, and H. Arwin, “Microstructural and infrared optical properties of electrochemically etched highly doped 4H-SiC,” J. Appl. Phys., 87, 8497–8503 (2000).

    Article  CAS  Google Scholar 

  26. T. Yamaguchi, J. Lafait, A. Bichri, and K. Driss-Kodja, “Effective media equivalent to an asymmetric multilayer and to a rough interface,” Appl. Opt., 30, 489–494 (1991).

    Article  Google Scholar 

  27. K. Brudzewski, “Ellipsometric investigations of a substate-thin film system with rough boundaries using the equivalent film theory,” Thin Solid Films, 61, 183–191 (1979).

    Article  CAS  Google Scholar 

  28. D.E. Aspnes and J.B. Theeten, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B, 20, 3292–3302 (1979).

    Article  CAS  Google Scholar 

  29. D. Rönnow, S.K. Anderson, and G.A. Niklasson, “Surface roughness effects in ellipsometry: comparison of truncated sphere and effective medium models,” Opt. Mat., 4, 815–821 (1995).

    Article  Google Scholar 

  30. D. den Engelsen, “Optical anisotropy in ordered systems of lipids,” Surf. Sci., 56, 272–280 (1976).

    Article  Google Scholar 

  31. A.Y. Tronin and A.F. Konstantinova, “Ellipsometric study of the optical anisotropy of lead arachidate Langmuir films,” Thin Solid Films, 177, 305–314(1989).

    Article  CAS  Google Scholar 

  32. L.A.A. Pettersson, F. Carlsson, O. Inganäs, and H. Arwin, “Spectroscopic ellipsometry studies of optical properties of doped poly(3,4-ethylenedioxythiophene): An anisotropic metal,” Thin Solid Films, 313–314, 356–361 (1998).

    Article  Google Scholar 

  33. CM. Ramsdale and N.C. Greenham, “Ellipsometric determination of anisotropic optical constants in electroluminescent conjugated polymers” Adv. Mater., 14, 212–215 (2002).

    Article  CAS  Google Scholar 

  34. Y. Sano, “Optical anisotropy of bovine serum albumin,” J. Coll. Int. Sci., 124, 403–406 (1988).

    Article  CAS  Google Scholar 

  35. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B, 53. 4265–4274 (1996).

    Article  CAS  Google Scholar 

  36. H. Arwin, S. Welin-Klintström, and R. Jansson, “Off-null ellipsometry revisited: basic considerations for measuring surface concentrations at solid/liquid interfaces,” J. Coll. Int. Sci., 156, 377–382 (1993).

    Article  CAS  Google Scholar 

  37. G. Jin, R. Jansson, and H. Arwin, “Imaging ellipsometry revisited: developments for visualization of thin transparent layers on silicon substrates,” Rev. Sci. Instr., 67, 2930–2936 (1996).

    Article  CAS  Google Scholar 

  38. N. Holmström, A. Askendal, and P. Tengvall, “In vitro studies on blood protein adsorption to gold and pyrolytic carbon at pre-set electrical potentials,” Coll. Surf. B, 11, 265–271 (1998).

    Article  Google Scholar 

  39. J-W. Benjamins, B. Jönsson, K. Thuresson, and T. Nylander, “New experimental setup to use ellipsometry to study liquid-liquid and liquid-solid interfaces,” Langmuir, 18, 6437–6444 (2002).

    Article  CAS  Google Scholar 

  40. Th. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films, 313–314, 718–721 (1998).

    Article  Google Scholar 

  41. M. Poksinski, H. Dzuo, J-O. Järrhed, and H. Arwin, “Total internal reflection ellipsometry,” Proceedings of Eurosensors XIV, Copenhagen, August 27–30, 2000.

    Google Scholar 

  42. S. Rekveld, “Ellipsometric studies of protein adsorption onto hard surface in a flow cell,” 1997, Fedobruk, Enschede.

    Google Scholar 

  43. I. Lundström, “Real-time biospecific interaction analysis,” Biosensors & Bioelectronics, 9, 725–736 (1994).

    Article  Google Scholar 

  44. U. Jönsson, I. Rönnberg, and M. Malmqvist, “Flow-injection ellipsometry — an in situ method for the study of biomolecular adsorption and interaction at solid surfaces,” Coll. Surf., 13, 333–339 (1985).

    Article  Google Scholar 

  45. J.L. Ortega-Vinuesa, P. Tengvall, B. Wälivaara, and I. Lundström, “Stagnant versus dynamic conditions: a comparative adsorption study of blood proteins,” Biomat., 19, 251–262 (1998).

    Article  CAS  Google Scholar 

  46. C.A-C. Karlsson, M.C. Wahlgren, and A.C. Trägårdh, “Non-invasive monitoring of protein adsorption and removal in a turbulent flow cell,” Coll. Surf. B, 20, 9–25 (2001).

    Article  CAS  Google Scholar 

  47. B. Arkles, “Tailoring surfaces with silanes,” Chemtech., 7, 766–778 (1977).

    CAS  Google Scholar 

  48. E.P. Pluddeman, “Chemistry of silane coupling agents,” in Silylated Surfaces, (D. E. Leyden, Ed.). Gordon & Breach, New York (1980) pp. 31–53.

    Google Scholar 

  49. S. Welin-Klintström, A. Askendal, and H. Elwing, “Surfactant and protein interactions on wettability gradient surfaces,” J. Coll. Int. Sci., 158, 188–194 (1993).

    Article  Google Scholar 

  50. S. Welin-Klintström, R. Jansson, and H. Elwing, “An off-null ellipsometer with lateral scanning capability for kinetic studies at liquid-solid interfaces,” J. Coll. Int. Sci., 157, 498–503 (1993).

    Article  Google Scholar 

  51. J. Mårtensson and H. Arwin, “Interpretation of spectroscopic ellipsometric data on protein layers on gold including substrate-layer interactions,” Langmuir, 11, 963–968 (1995).

    Article  Google Scholar 

  52. V. Reipa, A.K. Gaigalas, and V.L. Vilker, “Spectroscopic real-time ellipsometry of putidaredoxin adsorption on gold electrodes,” Langmuir, 13, 3508–3514 (1997).

    Article  CAS  Google Scholar 

  53. A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev., 96, 1533–1554 (1996).

    Article  CAS  Google Scholar 

  54. F. Schreiber, “Structure and growth of self-assembling monolayers,” Progr. Surf. Sci., 65, 151–256 (2000).

    Article  CAS  Google Scholar 

  55. F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J.J. Ramsden, M. Textor, N.D. Spencer, P. Tengvall, J. Gold, and B. Kasemo, “A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation,” Coll. Surf. B, 24, 155–170 (2002).

    Article  Google Scholar 

  56. H. Arwin, I. Lundström, S. Arielly, and G. Claeson, “Orientation of a tripep-tide on platinum,” Langmuir, 6, 1551–1557 (1990).

    Article  CAS  Google Scholar 

  57. K. Järrendahl and H. Arwin, “Multiple sample analysis of spectroscopic ellipsometry data of semi-transparent films,” Thin Solid Films, 313–314, 114–118 (1998).

    Article  Google Scholar 

  58. F. Tiberg and M. Landgren, “Characterization of thin nonionic surfactant films at the silica/water interface by means of ellipsometry,” Langmuir, 9, 927–932 (1993).

    Article  CAS  Google Scholar 

  59. I. Lundström and H. Elwing, “Simple kinetic models for protein exchange reactions on solid surfaces,” J. Coll. Int. Sci., 136, 68–84 (1990).

    Article  Google Scholar 

  60. I. Lundström, B. Ivarsson, U. Jönsson, H. Elwing, “Protein adsorption and interaction at solid surfaces,” in Polymer Surfaces and Interfaces, John Wiley & Sons Ltd, (W.J Feast, H.S Munro, Eds), 1987, pp. 201–230.

    Google Scholar 

  61. M. Wahlgren, T. Arnebrant, and I. Lundström, “The adsorption of lysozyme to hydrophilic silicon oxide surfaces: comparison between experimental data and models for adsorption kinetics,” J. Coll. Int. Sci., 175, 506–514 (1995).

    Article  CAS  Google Scholar 

  62. P. Tengvall, I. Lundström, and B. Liedberg, “Protein adsorption studies on model organic surfaces: an ellipsometric and infrared spectroscopic approach,” Biomaterials, 19, 407–422 (1998).

    Article  CAS  Google Scholar 

  63. H. Elwing, “Protein absorption and ellipsometry in biomaterial research,” Biomaterials, 19, 397–406 (1998).

    Article  CAS  Google Scholar 

  64. B. Ivarsson and I. Lundström, “Physical characterization of protein adsorption on metal and metaloxide surfaces,” CRC Crit. Rev. Biocompat, 2, 1–96 (1986).

    CAS  Google Scholar 

  65. C.E. Giacomelli, M.J. Esplandiú, P.I. Ortiz, M.J. Avena, and C.P. De Pauli, “Ellipsometric study of bovine serum albumin adsorbed onto Ti/TiO2 electrodes,” J. Coll. Int. Sci., 218, 404–411 (1999).

    Article  CAS  Google Scholar 

  66. B. Lassen and M. Malmsten, “Competitive protein adsorption at plasma polymer surfaces,” J. Coll. Int. Sci., 186, 9–16 (1997).

    Article  CAS  Google Scholar 

  67. M-R. Sierakowski, R.A. Freitas, J. Fujimoto, and D.F.S. Petri, “Adsorption behavior of oxidized galactomannans onto amino-terminated surfaces and their interaction with bovine serum albumin,” Carbohydrate Pol., 49, 167–175 (2002).

    Article  CAS  Google Scholar 

  68. S.M. Ma, D.L. Coleman, and J.D. Andrade, “Ellipsometry studies of albumin films on tantalum oxide and SiO2,” Surf. Sci., 56, 117–125 (1976).

    Article  CAS  Google Scholar 

  69. D. Beaglehole, B. Webster, and S. Werner, “Ellipsometry study of the adsorption of molecules at electrolyte interfaces with gold and stainless steel,” J. Coll. Int. Sci., 202, 541–550 (1998).

    Article  CAS  Google Scholar 

  70. B.A. Ivarsson, P-O. Hegg, K.I. Lundström, and U. Jonsson, “Adsorption of proteins on metal surfaces studied by ellipsometric and capacitance measurements,” Coll. Surf., 13, 169–192 (1985).

    Article  CAS  Google Scholar 

  71. M. Malmsten, “Ellipsometry studies of the effects of surface hydrophobicity on protein adsorption,” Coll. Surf. B: Interfaces, 3, 297–308 (1995).

    Article  CAS  Google Scholar 

  72. H. Nygren, H. Arwin, and S. Welin-Klintström, “Nucleation as the rate-limiting step in the initial adsorption of ferritin at a hydrophobic surface,” Colloids and Surfaces A, 76, 87–93 (1993).

    Article  CAS  Google Scholar 

  73. P. Tengvall, A. Askendal, I. Lundström, and H. Elwing, “Studies of surface activated coagulation: antisera binding onto methyl gradients on silicon incubated in human plasma in vitroBiomaterials, 13, 367–374 (1992).

    Article  CAS  Google Scholar 

  74. M. Malmsten, “Studies of serum protein adsorption at phospholipid surfaces in relation to intravenous drug delivery,” Coll. Surf., 159, 77–87 (1999).

    Article  CAS  Google Scholar 

  75. P. Tengvall, A. Askendal, and I. Lundström, “Temporal studies on the deposition of complement on human colostrum IgA and serum IgG immobilized on methylated silicon,” J. Biomed. Mat. Res., 35, 81–92 (1997).

    Article  CAS  Google Scholar 

  76. B. Kasemo and J. Lausmaa, “Material-tissue interfaces: the role of surface properties and processes,” Environ. Health Perspect., 102, 41–45 (1994).

    Google Scholar 

  77. S. Zangooie, R. Bjorklund, and H. Arwin, “Protein adsorption in thermally oxidized porous silicon layers,” Thin Solid Films, 313–314, 825–830 (1998).

    Article  Google Scholar 

  78. H. Arwin, M. Gavutis, J. Gustafsson, M. Schultzberg, S. Zangooie, and P. Tengvall, “Protein adsorption in thin porous silicon layers,” Phys. Stat. Sol. (a), 182, 515–520 (2000).

    Article  CAS  Google Scholar 

  79. R.M.A. Azzam, P.G. Rigby, and J.A. Krueger, “Kinetics of protein adsorption and immunological reactions at a liquid/solid interface by ellipsometry,” Phys. Med. Biol., 22, 422–430 (1977).

    Article  CAS  Google Scholar 

  80. M. Lestelius, B. Liedberg, and P. Tengvall, “In vitro plasma protein adsorption on ω-functionalized alkanethiolate self-assembled monolayers,” Langmuir, 13, 5900–5908 (1997).

    Article  CAS  Google Scholar 

  81. M. Poksinski, H. Dzuho, and H. Arwin, “Copper corrosion monitoring with total internal reflection ellipsometry,” J. Electrochem. Soc. 150, B536–539 (2003).

    Article  CAS  Google Scholar 

  82. P. Westphal and A. Bornmann, “Biomolecular detection by surface plasmon enhanced ellipsometry,” Sens. Act. B, 84, 278–282 (2002).

    Article  Google Scholar 

  83. M. Poksinski, J.-O. Järrhed, and H. Arwin, “In situ monitoring of adsorption from milk on metal surfaces using total internal reflection ellipsometry,” Sensors and Actuators, B 94, 247–252 (2003).

    Google Scholar 

  84. A. Hamnett, “Ellipsometric techniques for the characterization of electrode surfaces,” J. Chem. Soc. Far. Trans., 89, 1593–1607 (1993).

    Article  CAS  Google Scholar 

  85. I.C. Hahn Berg, D. Muller, T. Arnebrant, and M. Malmsten, “Ellipsometry and TIRF studies of enzymatic degradation of interfacial proteinaceous layers,” Langmuir, 17, 1641–1652 (2001).

    Article  CAS  Google Scholar 

  86. S. Engström and K. Bäckström, “Ellipsometry as a tool to study detergency at hard surfaces,” Langmuir, 3, 568–574 (1987).

    Article  Google Scholar 

  87. L-T. Lee, B.K. Jha, M. Malmsten, and K. Holmberg, “Lipase-surfactant interactions studied by neutron reflectivity and ellipsometry,” J. Phys. Chem. B, 103, 7489–7494 (1999).

    Article  CAS  Google Scholar 

  88. I.C. Hahn Berg, S. Kalfas, M. Malmsten, and T. Arnebrant, “Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases orginating from Euphausia superba for plaque control,“ Eur. J. Oral Sci., 109, 316–324 (2001).

    Article  CAS  Google Scholar 

  89. I.C. Hahn Berg, U.M. Elofsson, A. Joiner, M. Malmsten, and T. Arnebrant, “Salivary protein adsorption onto hydroxyapatite and SDS-mediated elution studied by in situ ellipsometry,” Biofouling, 17, 173–187 (1998).

    Google Scholar 

  90. L. Lindh, P-O. Glantz, P-E. Isberg, and T. Arnebrant, “An in vitro study of initial adsorption from human parotid and submandibular/sublingual resting saliva at solid/liquid interfaces,” Biofouling, 17, 227–239 (2001).

    Google Scholar 

  91. L. Lindh, P-O. Glantz, N. Strömberg, and T. Arnebrant, “On the adsorption of human acidic proline-rich proteins (PRP-1 and PRP-3) and statherin at solid/liquid interfaces,” Biofouling, 18, 87–94 (2002).

    Article  CAS  Google Scholar 

  92. C. Karlsson, A-C. Wahlgren, M.C. Trägårdh, and A. Christian, “Some surface-related aspects of the cleaning of new and reused stainless-steel surfaces fouled by protein,” Int. Dairy J., 8, 925–933 (1998).

    Article  CAS  Google Scholar 

  93. M. Lakamraju, J. McGuire, and M. Daeschel, “Nisin adsorption and exchange with selected milk proteins at silanized silica surfaces,” J. Coll. Int. Sci., 178, 495–504 (1996).

    Article  CAS  Google Scholar 

  94. T. Nylander, F. Tiberg, and N.M. Wahlgren, “Evaluation of the structure of adsorbed layers of (β-casein from ellipsometry and surface force measurements,” Int. Dairy J., 9, 313–317 (1999).

    Article  CAS  Google Scholar 

  95. J. Örnebro, M. Wahlgren, A-C. Eliasson, R.J. Fido, and A.S. Tatham, “Adsorption of α-, β-, γ-and ω-gliadins onto hydrophobic surfaces,” J. Cereal Sci., 30, 105–114 (1999).

    Article  Google Scholar 

  96. F. Chao and M. Costa, “The electrochemical interface, a stratified medium studied by ellipsometry,” Surf. Sci., 135, 497–520 (1983).

    Article  CAS  Google Scholar 

  97. C. Werner, K-J. Eichhorn, K. Grundke, F. Simon, W. Grählert, and H-J. Jacobasch, “Insight on structural variations of protein adsorption layers on hydrophobic fluorohydrocarbon polymers gained by spectroscopic ellipsometry (part I),” Coll. Surf. A: Physicochemical and Engineering Aspects, 156, 3–17 (1999).

    Article  CAS  Google Scholar 

  98. R.J. Marsh, R.A.L. Jones, and M. Sferrazza, “Adsorption and displacement of a globular protein on hydrophilic and hydrophobic surfaces,” Coll. Surf. B, 23, 31–42 (2002).

    Article  CAS  Google Scholar 

  99. M. Vinnichenko, Th. Chevolleau, M.T. Pham, L. Poperenko, and M.F. Maitz, ”Spectroellipsometric AFM and XPS probing of stainless steel surfaces subjected to biological influences,” Appl. Sufr. Sci., 8168, 1–10 (2002).

    Google Scholar 

  100. D. van Noort, J. Rumberg, E.W.H. Jager, and C-F. Mandenius, “Silicon based affinity biochips viewed with imaging ellipsometry,” Meas. Sci. Tech., 11, 801–808 (2000).

    Article  Google Scholar 

  101. A. Eing and M. Vaupel, “Imaging ellipsometry in biotechnology,” Nanofilm surface analysis, July 2002.

    Google Scholar 

  102. Th. Ericson, K.M. Pruitt, H. Arwin, and I. Lundström, “Ellipsometric studies of film formation on tooth enamel and hydrophilic silicon surfaces,” Acta. Odont. Scand., 40, 197–201 (1979).

    Google Scholar 

  103. M. Malmsten, G. Siegel, and A. Becker, “A model substrate for ellipsometry studies of lipoprotein deposition at the endothelium,” J. Coll. Int. Sci., 240, 372–374 (2001).

    Article  CAS  Google Scholar 

  104. M. Malmsten, G. Siegel, and W.G. Wood, “Ellipsometry studies of lipoprotein adsorption,” J. Coll. Int. Sci., 224, 338–346 (2000).

    Article  CAS  Google Scholar 

  105. D.J. Brink, and M.E. Lee, “Thin-film biological reflectors: optical characterization of the Chrysiridia croesus moth,” Appl. Opt., 37, 4213–4217 (1998).

    Article  CAS  Google Scholar 

  106. D.J. Brink, and M.E. Lee, “Ellipsometry of diffractive insect reflectors,” Appl. Opt., 35, 1950–1955 (1996).

    Article  Google Scholar 

  107. J.M. Bueno, and J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthal. Physiol. Opt., 21, 384–392 (2001).

    Article  CAS  Google Scholar 

  108. J.A. Paczka, D.S. Friedman, H.A. Quigley, Y. Barron, and S. Vitale, “Diagnostic capabilities of frequency-doubling technology, scanning laser polarimetry, and nerve fiber layer photographs to distinguish glaucomatous damage,” Amer. J. Ophthalmology, 131, 188–197 (2001).

    Article  CAS  Google Scholar 

  109. H. Arwin, “Is ellipsometry suitable for sensor applications?,” Sensors & Actuators A, 92, 43–51 (2001).

    Article  Google Scholar 

  110. G. Jin, P. Tengvall, I. Lundström, and H. Arwin, “A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions,” Anal. Biochem., 232, 69–72 (1995).

    Article  CAS  Google Scholar 

  111. S. Guo, R. Rochotzki, I. Lundströn, and H. Arwin, “Ellipsometric sensitivity to halothane vapors of hexamethyldisiloxane plasma polymer films,” Sensors & Actuators B Chemical, 44, 243–247 (1997).

    Article  Google Scholar 

  112. G. Wang, H. Arwin, and R. Jansson, “An optical gas sensor based on ellipsometric readout,” IEEE Sensor Journal, 3, 739–743 (2003).

    Article  CAS  Google Scholar 

  113. B. Trotter, G. Moddel, R. Ostroff, and G.R. Bogart, “Fixed-polarizer ellipsometry: a simple technique to measure the thickness of very thin films,” Opt. Eng., 38, 902–907 (1999).

    Article  Google Scholar 

  114. Biophotonics International, July 36–37 (1999).

    Google Scholar 

  115. R.M. Ostroff, D. Maul, G.R. Bogart, S. Yang, J. Christian, D. Hopkins, D. Clark, B. Trotter, and G. Moddel, “Fixed polarizer ellipsometry for simple and sensitive detection of thin films generated by specific molecular interactions: applications in immunoassays and DNA sequence detection,” Clin. Chem., 44, 2031–2035 (1998).

    CAS  Google Scholar 

  116. R.M. Ostroff, D. Hopkins, A.B. Haeberli, W. Baouchi, and B. Polisky, “Thin film biosensor for rapid visual detection of nucleic acid targets,” Clin. Chem., 45, 1659–1664 (1999).

    CAS  Google Scholar 

  117. K. Spaeth, A. Brecht, and G. Gauglitz, “Studies on the biotin-avidin multilayer adsorption by spectroscopic ellipsometry,” J. Coll. Int. Sci., 196, 128–135 (1997).

    Article  CAS  Google Scholar 

  118. J. Benesch, A. Askendal, and P. Tengvall, “The determination of thickness and surface mass density of mesothick immunoprecipitate layers by null ellipsometry and protein123 Iodine labeling,” J. Coll. Int. Sci., 249, 84–90 (2002).

    Article  CAS  Google Scholar 

  119. Z. Yang, W. Frey, T. Oliver, and A. Chilkoti, “Light-activated affinity micropatterning of proteins on self-assembled monolayers on gold,” Langmuir, 16, 1751–1758 (2000).

    Article  CAS  Google Scholar 

  120. A. Röseler, and E-H. Korte, “Infrared Spectroscopic Ellipsometry,” in Handbook of vibrational spectroscopy, John Wiley & Sons Ltd, Chichester (2002) pp. 1–26.

    Google Scholar 

  121. C.W. Meuse, “Infrared spectroscopic ellipsometry of self-assembled monolayers,” Langmuir, 16, 9483–9487 (2000).

    Article  CAS  Google Scholar 

  122. A. Röseler, R. Dietel, and E-H. Korte, Mikrochim. Acta (Suppl), 14, 657 (1997).

    Google Scholar 

  123. L.M. Karlsson, H. Arwin, and J.A. Woollam, “Identification and quantification of human carbonic anhydrase II in porous silicon by infrared ellipsometry,” 7 th Int. Conf. on Nanometer-scale Science and Technology and 21 st European Conference on Surface Science (NANO-7 ECOSS-21), 2002, abstracts p. 56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 William Andrew, Inc.

About this chapter

Cite this chapter

Arwin, H. (2005). Ellipsometry in Life Sciences. In: Tompkins, H.G., Irene, E.A. (eds) Handbook of Ellipsometry. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-27488-X_12

Download citation

Publish with us

Policies and ethics