Skip to main content

Gene und Genom

  • Chapter
Molekulare Zellbiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 6753 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Miescher JF (1871) Hoppe-Seyler’s Med Chem Untersuchungen 4:441

    Google Scholar 

  2. Altmann R (1889) Anat u. Physiol. Physiol Abt 524

    Google Scholar 

  3. Entnommen aus: Mirsky AE (1968) The discovery of DNA. Sci Am 218:78–88 (June)

    Google Scholar 

  4. Levene PA, London ES (1929) The structure of thymonucleic acid. J Biol Chem 83:793–802

    CAS  Google Scholar 

  5. Levene PA, Bass LW (1931) Nucleic Acids. The Chemical Catalog Co

    Google Scholar 

  6. Arkwright JA (1921) Variation in bacteria in relation to agglutination both by salts and by specific serum. J Path Bact 24:36–60

    Article  Google Scholar 

  7. Griffith F (1923) The influence of immune serum on the biological properties of pneumococci. Rep. Public Health Med Subj 18:1–13

    Google Scholar 

  8. Griffith F (1928) The significance of pneumococcal types. J Hygiene 27:113–159

    Article  Google Scholar 

  9. Dawson MH (1930) The transformation of pneumococal types. J Exp Med 51:123–147

    Article  Google Scholar 

  10. Dawson MH, Sia RHP (1931) In vitro transformation of pneumococcal types. J Exp Med 54:701–710

    Article  Google Scholar 

  11. Alloway JL (1932) The transformation in vitro of R pneumococci into S forms of different specific types by use of filtered pneumococcus extracts. J Exp Med 55:91–99

    Article  Google Scholar 

  12. McCarty M (1985) The transforming principle: Discovering that genes are made of DNA. Norton

    Google Scholar 

  13. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158

    Article  CAS  Google Scholar 

  14. Chargaff E (1950) Chemical specificity of nucleic acids and mechanism of their enzymic degradation. Experentia 6:201–209

    Article  Google Scholar 

  15. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  PubMed  CAS  Google Scholar 

Struktur und Topologie der DNA

  • Champoux JJ (2002) Type IA DNA topoisomerases: strictly one step at a time. Proc Natl Acad Sci USA 99:11998–12000

    Article  PubMed  CAS  Google Scholar 

  • Dennis C et al (2003) The double helix — 50 years. Nature 421:395–453

    Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases. Nature Revs MCB 3:430–440

    Article  CAS  Google Scholar 

  • Winchester G (2003) 50 years before the double helix. Curr Biol 13:R747–R749. [Erste Entdeckungen über Chromosomen als Genträger]

    Article  PubMed  CAS  Google Scholar 

Transposition

  • Jordan IK et al (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Gen 19:68–72

    Article  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: Drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Gen 35:501–538

    Article  CAS  Google Scholar 

  • Stoye JP (2001) Endogenous retroviruses: still active after all these years? Curr Biol 11:R914–R916

    Article  PubMed  CAS  Google Scholar 

  • Weiner AM (2002) SINEs and LINEs: the art of biting the hand that feeds you. Curr Opin Cell Biol 14:343–350

    Article  PubMed  CAS  Google Scholar 

Genomanalyse

Aus Sicht des Menschen, Trinucleotidvermehrung

  • Cattaneo E et al (2002) The enigma of Huntington’s disease. Sci Am 287:92–97 [Dec]

    Google Scholar 

  • Dawson TD, Ginty DD (2002) CREB family transcription factors inhibit neuronal suicide. Nature Med 8:450–451

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein DC (2002) Lessons from animal models of Huntington’s disease. Trends Gen 18:202–209

    Article  Google Scholar 

  • Ross CA (2002) Polyglutamine pathogenesis. Neuron 35:819–822

    Article  PubMed  CAS  Google Scholar 

  • Sanchez I et al (2003) Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 421:373–379

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Gene und Genom. In: Molekulare Zellbiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27466-9_10

Download citation

Publish with us

Policies and ethics