Deformation of the South American Crust Estimated from Finite Element and Collocation Methods

  • Hermann Drewes
  • Oliver Heidbach
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 128)


The present-day surface velocity field of the South American continent reflects the recent geodynamic features. It varies from quasi rigid body motion in the eastern part to mountain range deformation in the western Andes. Space geodetic observations provide velocities at discrete points only. To represent the continuous velocity field, an adequate deformation model has to be developed. Two different models are applied, the least squares collocation approach (LSC) and the finite element method (FEM). The input data are given by 329 velocities derived from continuously observing GPS stations and several GPS geodynamics projects. The different data sets are transformed to a common kinematic datum by deriving the rotation vector of the South American plate from station motions of the IGS Regional Network (RNAAC-SIR) in the rigid eastern part and reducing these plate motions from all the data sets. The resulting residual motions define the boundary conditions in the FEM and the input signals in the LSC. For the FEM a network of approximately 75000 linear elements is generated. The model theology is a homogeneous elastic material (Young’s modulus 70 GPa and Poisson ratio 0,3). For the LSC empirical covariance functions are derived from the observed velocity vectors. The comparison of both methods shows an agreement in the mm/a level. The result is a continuous surface velocity model for the South American continent which may be used for interpolation of point motions in geodetic networks and reference frames. A detailed geodynamic interpretation has not yet been done due to the simplicity of the model (homogeneous material, rough fault structures, no sophisticated dynamics).


Recent crustal movements South America SIRGAS GPS velocity field collocation finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Angermann D., Klotz J., Reigber C. (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sc Lett. 171, 329–334.CrossRefGoogle Scholar
  2. Angermann D., Krügel M., Meisel B., Müller H., Tesmer V. (2003) Time series of station positions and datum parameters. Geotechno-logien Science Report No. 3, 17–21.Google Scholar
  3. Audemard F.E., Audemard F.A. (2002) Structure of the Mérida Andes, Venezuela: relations with the South America-Caribbean geodynamic interaction. Tectonophysics 345, 299–327.CrossRefGoogle Scholar
  4. Bevis M., Kendrick E., Smalley J.R., Brooks B., Allmendinger R., Isacks B. (2001) On the strength of interplate coupling and the rate of back are convergence in the central Andes: An analysis of the interseismic velocity field. Geochem., Geophys., Geosyst. 2, 10.1029/2001GC000198.Google Scholar
  5. Bird P. (2003) An updated digital model for plate boundaries. Geochem., Geophys., Geosyst. 4(3), 1027, doi: 10.1029/2001GC000252.CrossRefGoogle Scholar
  6. Brooks, B.A., Bevis, M., Smalley, J.R., Kendrik, E., Manceda, R., Lauria, E., Maturana, R., Araujo, M. (2003) Do the Andes behave like a microplate? G3 Geochem., Geophys., Geosyst. 4,(10), 1085, doi: 10.1029/2003GC000505.CrossRefGoogle Scholar
  7. Drewes H. (1997) Time evolution of the SIRGAS reference frame. IAG Symposia 118, 174–179, Springer, Berlin.Google Scholar
  8. Drewes H., Kaniuth K., Seemüller W., Stuber K., Tremel H., Hernandez N., Hoyer M., Wildermann E., Fortes L.P., Pereira K.D. (2000) Monitoring the Continental Reference Frame in South America. IAG Symposia 124, 134–137. Springer, Berlin.Google Scholar
  9. Drewes, H., Kaniuth, K., Vö1ksen, C., Costa, S.M., Fortes, L.P. (2004) Results of the SIRGAS Campaign 2000 and coordinates variations with respect to the 1995 South American Geocentric Reference Frame. IAG Symposia (this volume) Springer, Berlin.Google Scholar
  10. Heidbach, O., Drewes, H. (2003) 3-D Finite Element model of major tectonic processes in the Eastern Mediterranean. In: Nieuwland, D.A. (ed.) New insigths in structural interpretation and modelling, Geological Society, Spec. Pub. 212, 261–274, London.Google Scholar
  11. Hoyer, M., Arciniegas, S., Pereira, K., Fagard, H., Maturana, R., Torchetti, R., Drewes, H., Kumar, M., Seeber, G. (1997) The definition and realization of the reference system in the SIRGAS project. IAG Symposia 118, 168–173, Springer, Berlin.Google Scholar
  12. Kaniuth K., Drewes H., Stuber K., Tremel H., Hernández N., Hoyer M., Wildermann E., Kahle H. G., Geiger A., Straub C. (1999) Position changes due to recent crustal deformations along the Caribbean — South American plate boundary derived from the CASA GPS Project. XXII IUGG General Assembly, Birmingham, UK.Google Scholar
  13. Kaniuth K., Müller H., Seemüller W. (2002) Displacement of the space geodetic observatory Arequipa due to recent earthquakes. Zeitschr. für Verm. 127(4), 238–243.Google Scholar
  14. Kellogg J.N., Vega V., Stallings T.C., Aiken C. L.V. (1995) Tectonic development of Panama, Costa Rica, and the Colombian Andes: Constraints from Global Positioning System geodetic studies and gravity. In: Mann, P. (ed.) Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America, Geol. Soc. Am. Special Paper 295, 75–90.Google Scholar
  15. Kendrick E., Bevis M., Smalley J.R., Brooks B. (2001) An integrated crustal velocity field for the central Andes. Geochem. Geophys. Geosyst. 2, 10.129/2001GC000191.Google Scholar
  16. Kendrick E.C., Bevis M., Cifuentes O., Galban F. (1999) Current rates from convergence across the Central Andes: Estimates from continuous GPS observations. Geophys. Res. Lett. 26(5), 541–544.CrossRefGoogle Scholar
  17. Khazaradze G., Klotz J. (2003) Short-and long-term effects of GPS measured crustal deformation rates along the south central Andes. J. Geophys. Res. 108(B6), 2289, doi: 10.1029/ 2002JB001879.CrossRefGoogle Scholar
  18. Klotz J., Khazaradze G., Angermann D., Reigber C., Perdomo R., Cifuentes, O. (2001) Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. pp. 437–446.Google Scholar
  19. Lamb S. (2000) Active deformation in the Bolivian Andes, South America. J. Geophys. Res. 105, 25627–25653.CrossRefGoogle Scholar
  20. Luz, R.T., Fortes, L.P., Hoyer, M., Drewes, H. (2002) The vertical reference frame for the Americas — The SIRGAS 2000 GPS campaign. IAG Symposia 124, 302–305. Springer, Berlin.Google Scholar
  21. Meijer P.T. and Wortel M.J.R. (1997) Present-day dynamics of the Agean region: A model analysis ot the horizontal pattern of stress and deformation. Tectonics 16, 879–895.CrossRefGoogle Scholar
  22. Norabuena, E., L. Leffler-Griffin; A. Mao; T. Dixon; S. Stein; I.S. Sacks; L. Ocola; M. Ellis (1998): Space geodetic observations of Nazca-South America convergence across the Central Andes. Science (279) 358–362.CrossRefGoogle Scholar
  23. Pollitz F. F., Peltzer G. and Bürgmann R. (2000) Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992 Landers earthquake. J Geophys. Res. 105, 8035–8054.CrossRefGoogle Scholar
  24. Seemüller, W., Kaniuth, K., Drewes, H. (2002) Velocity estimates of IGS RNAAC SIRGAS stations. IAG Symposia 124, 7–10. Springer, Berlin.Google Scholar
  25. Wdowinski S. and Bock Y. (1994) The evolution of deformation and topography of high elevated plateaus: 2. Application to the central Andes. J. Geophys. Res. 99, 7121–7130.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hermann Drewes
    • 1
  • Oliver Heidbach
    • 2
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MünchenGermany
  2. 2.Geophysical InstituteKarlsruhe UniversityKarlsruheGermany

Personalised recommendations