Skip to main content

Time Evolution of the Terrestrial Reference Frame

  • Conference paper

Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA,volume 128)

Abstract

This paper investigates the time evolution of the terrestrial reference frame (TRF). We analysed time series of site positions and datum parameters obtained from VLBI, SLR, GPS and DORIS solutions with respect to non-linear motions (e.g. jumps, seasonal signals) and systematic differences. The time series of the translation and scale parameters were used to identify solution- and technique-related problems, and to investigate the contribution of the different techniques to realise the TRF origin and scale. The position time series reveal non-linear motions and jumps for many sites, which have to be considered for future TRF realisations.

Keywords

  • Terrestrial Reference Frame
  • ITRF
  • VLBI
  • SLR
  • GPS
  • DORIS
  • analysis of time series

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-27432-4_2
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-27432-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altamimi, Z., P. Sillard, C. Boucher (2002). ITRF2000: A New Release of the International Terrestrial Reference Frame for Earth Science Applications. J. Geophysical Res., 107(B10), 2214, doi:10.1029/2001JB000561.

    CrossRef  Google Scholar 

  • Angermann, D., M. Gerstl, R. Kelm, H. Müller, W. Seemüller, M. Vei (2002a). Time Evolution of SLR Reference Frame. Adv. in Space Res., Vol. 30/2, pp. 201–206, Elsevier.

    CrossRef  Google Scholar 

  • Angermann, D., H. Mülller, M. Gerstl (2002b). Geocenter variations derived from SLR data to LAGEOS 1 and 2. In: Vistas for Geodesy in the New Millennium, IAG Symposia, J. Adam and K.-P. Schwarz (eds), Vol. 125, pp. 30–35.

    Google Scholar 

  • Blewitt, G. D., Lavallee, P. Clarke, K. Nurutdinov (2001). A new global mode of Earth deformation: Seasonal cycle detected. Science, 294(5550), pp. 2342–2345.

    CrossRef  Google Scholar 

  • Blewitt (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res., Vol. 108, No. B2, 2103, doi: 10.1029/2002JB002082.

    CrossRef  Google Scholar 

  • Dong, D., T. Yunck, M. Heflin (2003). Origin of the International Terrestrial Reference Frame. J. Geophys. Res., Vol. 108, No. B4, 2200, doi: 10.1029/2002JB002035.

    CrossRef  Google Scholar 

  • Ferland, R. (2002). Activities of the International GPS Service IGS Reference Frame Working Group. In: Vistas for Geodesy in the New Millennium, IAG Symposia, J. Adam and K.-P. Schwarz (eds), Vol. 125, pp. 3–8, Springer.

    Google Scholar 

  • Herring, T. (2002). Personal Communication.

    Google Scholar 

  • Kaniuth, K., and S. Huber (2003). An assessment of radome effects on height estimates in the EUREF network. Mitt. Bundesamt für Kartographie und Geodäsie, 29, pp. 97–102.

    Google Scholar 

  • Kaniuth, K., H. Müller, W. Seemüller (2002). Displacement of the space geodetic observatory Arequipa due to recent earthquakes. Zeitschrift für Vermessungswesen, Heft 4, pp. 238–243, Witwer.

    Google Scholar 

  • Klotz, J., D. Angermann, G.W. Michel, R. Porth, C. Reigber, J. Reinking, J. Viramonte, R. Perdomo, V.H. Rios, S. Barientos, R. Barriga, O. Cifuentes (1999). GPS-derived deformation of the Central Andes including the 1995 Antofagasta Mw=8.0 Earthquake. Pure and Appl. Geophysics, 154, pp. 709–730.

    CrossRef  Google Scholar 

  • Klotz, J., G. Khazaradze, D. Angermann, C. Reigber, R. Perdomo, O. Cifuentes (2001). Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth and Planetary Science Letters, 193, pp. 437–446, Elsevier.

    CrossRef  Google Scholar 

  • Ma, C., M. Feissel (1997). Definition and Realisation of the International Celestial Reference System by Astrometry of Extragalactic Objects. IERS Technical Note 23, Paris.

    Google Scholar 

  • Rothacher, M. (2002). Estimation of station heights with GPS. In: Vertical Reference Systems, IAG Symposia, H. Drewes, A. Dodson, L. Fortes, L. Sanchez, P. Sandoval (eds), Vol. 124, pp. 81–90, Springer.

    Google Scholar 

  • Tesmer, V. (2002). VLBI Solution DGFI01RO1 based on least-squares estimation using OCCAM5.0 and DOGS-CS. In: IVS 2002 General Meeting Proceedings, N. Vandenberg and N.K. Baver (eds), NASA/CP-2002-210002.

    Google Scholar 

  • Titov, O., V. Tesmer, J. Böhm (2001). OCCAM5.0 Users Guide, AUSLIG Technical Report 7, Canberra.

    Google Scholar 

  • Willis, P. (2003). Personal Communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Angermann, D., Meisel, B., Krügel, M., Müller, H., Tesmer, V. (2005). Time Evolution of the Terrestrial Reference Frame. In: Sansò, F. (eds) A Window on the Future of Geodesy. International Association of Geodesy Symposia, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27432-4_2

Download citation