A Fresh Approach to Large Eddy Simulation of Turbulence

  • R.D. Moser
  • P. Zandonade
  • P. Vedula
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 101)


Large Eddy Simulation Direct Numerical Simulation Stochastic Estimation Isotropic Turbulence Subgrid Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Adrian. Stochastic estimation of sub-grid scale motions. Applied Mechanics Review, 43(5):214–218, 1990.CrossRefGoogle Scholar
  2. 2.
    R. Adrian, B. Jones, M. Chung, Y. Hassan, C. Nithianandan, and A. Tung. Approximation of turbulent conditional averages by stochastic estimation. Physics of Fluids, 1(6):992–998, 1989.CrossRefGoogle Scholar
  3. 3.
    I. Arad, V.S. L'vov, and I. Procaccia. Anomalous scaling in anisotropic turbulence. Physica A, 288:280–307, 2000.CrossRefGoogle Scholar
  4. 4.
    J. Langford and R. Moser. Optimal LES formulations for isotropic turbulence. Journal of Fluid Mechanics, 398:321–346, 1999.CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    J. A. Langford and R. D. Moser. Breakdown of continuity in large-eddy simulation. Phys. of Fluids, 11:943–945, 2001.Google Scholar
  6. 6.
    J.A. Langford. Toward Ideal Large-Eddy Simulation. PhD thesis, University of Illinois at Urbana-Champaign, 2000.Google Scholar
  7. 7.
    V. S. L'vov, I. Procaccia, and V. Tiberkevich. Scaling exponents in anisotropic hydrodynamic turbulence. Phys. Rev.E, 67:026312, 2003.CrossRefMathSciNetGoogle Scholar
  8. 8.
    R.D. Moser, J. Kim, and N.N. Mansour. Direct numerical simulation of turbulent channel flow up to Reτ = 590. Physics of Fluids, 11(4):943–945, April 1999.CrossRefzbMATHGoogle Scholar
  9. 9.
    M Oberlack. A unified approach for symmetries in plane parallel turbulent shear flows. Journal of Fluid Mechanics, 427:299–328, 2001.zbMATHCrossRefGoogle Scholar
  10. 10.
    R. Rogallo. Numerical experiments in homogeneous turbulence. Technical Report TM-81315, NASA Ames, 1981.Google Scholar
  11. 11.
    S. Volker, P. Venugopal, and R. D. Moser. Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. of Fluids, 14:3675, 2002.CrossRefGoogle Scholar
  12. 12.
    P. S. Zandonade, J. A. Langford, and R. D. Moser. Finite-volume optimal largeeddy simulation of isotropic turbulence. To appear in Phys. of Fluids, 2004.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R.D. Moser
    • 1
  • P. Zandonade
    • 1
  • P. Vedula
    • 1
  1. 1.University of IllinoisUrbanaUSA

Personalised recommendations