Advertisement

Low-Wavenumber Forcing and Turbulent Energy Dissipation

  • Charles R. Doering
  • Nikola P. Petrov
Part of the Springer Proceedings in Physics book series (SPPHY, volume 101)

Keywords

Energy Dissipation Direct Numerical Simulation Isotropic Turbulence Energy Dissipation Rate Total Kinetic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Jiménez, A. A. Wray, P. G. Saffman, and R. S. Rogallo. The structure of intense vorticity in isotropic turbulence. J. Fluid Mech., 255:65–90, 1993.CrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Grossmann and D. Lohse. Scale resolved intermittency in turbulence. Phys. Fluids, 6(2):611–617, 1994.CrossRefGoogle Scholar
  3. 3.
    K. R. Sreenivasan. On the universality of the Kolmogorov constant. Phys. Fluids, 7(11):2778–2784, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    L.-P. Wang, S. Chen, J. G. Brasseur, and J. C. Wyngaard. Examination of hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations. I. Velocity field. J. Fluid Mech., 309:113–156, 1996.CrossRefMathSciNetGoogle Scholar
  5. 5.
    P. K. Yeung and Y. Zhou. On the universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E, 56(2):1746–1752, 1997.CrossRefGoogle Scholar
  6. 6.
    K. R. Sreenivasan and R. A. Antonia. The phenomenology of small-scale turbulence. In Annual review of fluid mechanics, Vol. 29, volume 29 of Annu. Rev. Fluid Mech., pages 435–472. Annual Reviews, Palo Alto, CA, 1997.Google Scholar
  7. 7.
    K. R. Sreenivasan. An update on the energy dissipation rate in isotropic turbulence. Phys. Fluids, 10(2):528–529, 1998.CrossRefMathSciNetGoogle Scholar
  8. 8.
    N. Cao, S. Chen, and G. D. Doolen. Statistics and structures of pressure in isotropic turbulence. Phys. Fluids, 11(8):2235–2250, 1999.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Y. Yamazaki, T. Ishihara, and Y. Kaneda. Effects of wavenumber truncation on high-resolution direct numerical simulation of turbulence. J. Phys. Soc. Japan, 71(3):777–781, 2002.CrossRefGoogle Scholar
  10. 10.
    T. Gotoh, D. Fukayama, and T. Nakano. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys. Fluids, 14(3):1065–1081, 2002.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Y. Kaneda and T. Ishihara. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids, 15(2):L21–L24, 2003.CrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Schumacher, K. R. Sreenivasan, and P. K. Yeung. Derivative moments in turbulent shear flows. Phys. Fluids, 15(1):84–90, 2003.CrossRefMathSciNetGoogle Scholar
  13. 13.
    S. Childress, R. R. Kerswell, and A. D. Gilbert. Bounds on dissipation for Navier-Stokes flow with Kolmogorov forcing. Phys. D, 158(1–4):105–128, 2001.CrossRefMathSciNetGoogle Scholar
  14. 14.
    C. R. Doering and C. Foias. Energy dissipation in body-forced turbulence. J. Fluid Mech., 467:289–306, 2002.CrossRefMathSciNetGoogle Scholar
  15. 15.
    C. R. Doering, B. Eckhardt, and J. Schumacher. Energy dissipation in body-forced plane shear flow. J. Fluid Mech., 494:275–284, 2003.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Charles R. Doering
    • 1
  • Nikola P. Petrov
    • 1
  1. 1.Department of Mathematics and Michigan Center for Theoretical PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations