Blood Loss in pediatric spine surgery

  • Frederic Shapiro
  • Navil Sethna


This article reviews the extent of blood loss in spine surgery for scoliosis corrections in the pediatric age group. An extensive literature review presents blood loss values in surgery for adolescent idiopathic scoliosis, cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, and myelomeningocoele. The underlying disorder plays a major role in determining the extent of blood loss. Blood loss is considerably higher in those patients with a neuromuscular scoliosis compared with adolescent idiopathic scoliosis. Within the neuromuscular group those with Duchenne muscular dystrophy demonstrate the highest mean levels of blood loss. Blood loss is also shown to be progressively greater with increasing numbers of vertebral levels incorporated into the fusion, with posterior fusions compared to anterior fusions, and in those patients having both anterior and posterior fusions.


Scoliosis surgery Pediatric age group Blood loss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers HW, Hresko T, Carlson J, Hall JE (2000) Comparison of single-and dual-rod techniques for posterior spinal instrumentation in the treatments of adolescent idiopathic scoliosis. Spine 25:1944–1949CrossRefPubMedGoogle Scholar
  2. 2.
    Allen BL, Ferguson RL (1982) L-rod instrumentation for scoliosis in cerebral palsy. J Pediatr Orthop 2:87–90PubMedGoogle Scholar
  3. 3.
    Barr SJ, Schuette AM, Emans JB (1997) Lumbar pedicle screws versus hooks: results in double major curves in adolescent idiopathic scoliosis. Spine 22:1369–1379CrossRefPubMedGoogle Scholar
  4. 4.
    Basobas L, Mardjetko S, Hammerberg K, Lubicky J (2003) Selective anterior fusion and instrumentation for the treatment of neuromuscular scoliosis. Spine 28(20S):S245–248CrossRefPubMedGoogle Scholar
  5. 5.
    Bell DF, Moseley CF, Koreska J (1989) Unit rod segmental spinal instrumentation in the management of patients with progressive neuromuscular spinal deformity. Spine 14:1301–1307PubMedGoogle Scholar
  6. 6.
    Bellen P, Hody JL, Clairbois J, Denis N, Soudon PH (1993) The surgical treatment of spinal deformities in Duchenne muscular dystrophy. J Orthop Surg 7:48–57Google Scholar
  7. 7.
    Benson ER, Thomson JD, Smith BG, Banta JV (1998) Results and morbidity in a consecutive series of patients undergoing spinal fusion for neuromuscular scoliosis. Spine 23:2308–2318CrossRefPubMedGoogle Scholar
  8. 8.
    Bentley G, Haddad F, Bull TM, Seingry D (2001) The treatment of scoliosis in muscular dystrophy using modified Luque and Harrington-Luque instrumentation. J Bone Joint Surg 83B:22–28CrossRefGoogle Scholar
  9. 9.
    Bernstein RM, Hall JE (1998) Solid rod short segment anterior fusion in thoracolumbar scoliosis. J Pediatr Orthop B7:124–131Google Scholar
  10. 10.
    Betz RR, Harms J, Clements DH, Lenke LG, Lowe TG, Shufflebarger HL, Jeszenzsky S, Beele B (1999) Comparison of anterior and posterior instrumentation for correction of adolescent thoracic idiopathic scoliosis. Spine 24:225–239CrossRefPubMedGoogle Scholar
  11. 11.
    Bitan FD, Neuwirth MG, Kuflik PL, Casden A, Bloom N, Siddiqui S (2002) The use of short and rigid anterior instrumentation in the treatment of idiopathic thoracolumbar scoliosis. Spine 27:1553–1557CrossRefPubMedGoogle Scholar
  12. 12.
    Boachie-Adjei O, Lonstein JE, Winter RB, Koop S, Brink KV, Denis F (1989) Management of neuromuscular spinal deformities with Luque segmental instrumentation. J Bone Joint Surg 71A:548–562Google Scholar
  13. 13.
    Bonnett C, Brown JC, Grow T (1976) Thoracolumbar scoliosis in cerebral palsy. J Bone Joint Surg 58A:328–336Google Scholar
  14. 14.
    Bullman V, Halm HF, Nieyemer T, Hackenberg L, Liljenqvist U (2003) Dual-rod correction and instrumentation of idiopathic scoliosis with the Halm-Zielke instrumentation. Spine 28:1306–1313CrossRefPubMedGoogle Scholar
  15. 15.
    Bulman WA, Dormans JP, Ecker ML, Drummond DS (1996) Posterior spinal fusion for scoliosis in patients with cerebral palsy: a comparison of Luque rod and unit rod instrumentation. J Pediatr Orthop 16:314–323PubMedGoogle Scholar
  16. 16.
    Copley LAB, Richards S, Safavi FZ, Newton PO (1999) Hemodilution as a method to reduce transfusion requirements in adolescent spine fusion surgery. Spine 24:219–224CrossRefPubMedGoogle Scholar
  17. 17.
    Dias RD, Miller F, Dabney K, Lipton G, Temple T (1996) Surgical correction of spinal deformity using a rod in children with cerebral palsy. J Pediatr Orthop 16:734–740PubMedGoogle Scholar
  18. 18.
    Du Toit G, Relton JES, Gillespie R (1978) Acute haemodilutional autotransfusion in the surgical management of scoliosis. J Bone Joint Surg 60B:178–180Google Scholar
  19. 19.
    Edler A, Murray DJ, Forbes RB (2003) Blood loss during posterior spinal fusion surgery in patients with neuromuscular disease: is there an increased risk? Paediatr Anaesth 13:818–822CrossRefPubMedGoogle Scholar
  20. 20.
    Erwin WD, Dickson JH, Harrington PR (1976) The postoperative management of scoliosis patients treated with Harrington instrumentation and fusion. J Bone Joint Surg 58A:479–782Google Scholar
  21. 21.
    Feldman JM, Roth JV, Bjoraker DG (1995) Maximum blood savings by acute normovolemic hemodilution. Anesth Analg 80:108–113CrossRefPubMedGoogle Scholar
  22. 22.
    Ferguson RL, Hansen MM, Nicholas DA, Allen BL (1996) Same-day versus staged anterior-posterior spinal surgery in a neuromuscular scoliosis population: the evaluation of medical complications. J Pediatr Orthop 16:193–303Google Scholar
  23. 23.
    Fievez E, Schultze-Balin C, Herbaux B, Dalmas S, Scherpereel P (1995) Etude du saignement dans la chirurgie de la scoliose. Interventions par voie posterieure chez 319 adolescents. Cah Anesthesiol 43:425–433PubMedGoogle Scholar
  24. 24.
    Floman Y, Micheli LJ, Penny JN, Riseborough EJ, Hall JE (1982) Combined anterior and posterior fusion in seventy-three spinally deformed patients: indications, results, and complications. Clin Orthop 164:110–121PubMedGoogle Scholar
  25. 25.
    Florentino-Pineda I, Blakemore LC, Thompson GH, Poe-Kochert C, Adler P, Tripi P (2001) The effect of ε-aminocaproic acid on perioperative blood loss in patients with idiopathic scoliosis undergoing posterior spinal fusion: a preliminary study. Spine 26: 1147–1151CrossRefPubMedGoogle Scholar
  26. 26.
    Florentino-Pineda I, Thompson GH, Poe-Kochert C, Huang RP, Haber LL, Blakemore LC (2004) The effect of amicar on perioperative blood loss in idiopathic scoliosis: the results of a prospective, randomized double blind study. Spine 29:233–238CrossRefPubMedGoogle Scholar
  27. 27.
    Fox HJ, Thomas CH, Thompson AG (1997) Spinal instrumentation for Duchenne’s muscular dystrophy: experience of hypotensive anaethesia to minimize blood loss. J Pediatr Orthop 17:750–753CrossRefPubMedGoogle Scholar
  28. 28.
    Gersoff WK, Renshaw TS (1988) The treatment of scoliosis in cerebral palsy by posterior spinal fusion with Luquerod segmental instrumentation. J Bone Joint Surg 70A:41–44Google Scholar
  29. 29.
    Gibson DA, Koreska J, Robertson D, Kahn III A, Albisser AM (1978) The management of spinal deformity in Duchenne’s muscular dystrophy. Orthop Clin North Am 9:437–450PubMedGoogle Scholar
  30. 30.
    Guadagni J, Drummond D, Breed A (1984) Improved postoperative course following modified segmental instrumentation and posterior spinal fusion for idiopathic scoliosis. J Pediatr Orthop 4:405:408PubMedGoogle Scholar
  31. 31.
    Guay J, Haig M, Lortie L, Guertin MC, Poitras B (1994) Predicting blood loss in surgery for idiopathic scoliosis. Can J Anaesth 41:775–781PubMedGoogle Scholar
  32. 32.
    Guidera KJ, Hooten J, Weatherly W, Highhouse M, Castellvi A, Ogden JA, Pugh L, Cook S (1993) Cotrel-Dubousset instrumentation: results in 52 patients. Spine 18:427–431PubMedGoogle Scholar
  33. 33.
    Harrington PR, Dickson JH (1973) An eleven-year clinical investigation of Harrington instrumentation. Clin Orthop 93:113–130PubMedGoogle Scholar
  34. 34.
    Heller KD, Wirtz DC, Siebert CH, Forst R (2001) Spinal stabilization in Duchenne muscular dystrophy: principles of treatment and record of 31 operative treated cases. J Pediatr Orthop 10:18–24Google Scholar
  35. 35.
    Hopf CG, Eysel P, Dubousset J (1997) Operative treatment of scoliosis with Cotrel-Dubousset-Hopf instrumentation. Spine 22:617–628CrossRefGoogle Scholar
  36. 36.
    Hsu LCS, Sucherman J, Tang SC, Leong JCY (1982) Dwyer instrumentation in the treatment of adolescent idiopathic scoliosis. J Bone Joint Surg 64B:536–541Google Scholar
  37. 37.
    Kaneda K, Shono Y, Satoh S, Abumi K (1997) Anterior correction of thoracic scoliosis with Kaneda anterior spinal system: a preliminary report. Spine 22:1358–1368CrossRefPubMedGoogle Scholar
  38. 38.
    Kannan S, Meert KL, Mooney JF, Hillman-Wiseman C, Warrier I (2002) Bleeding and coagulation changes during spinal fusion surgery: a comparison of neuromuscular and idiopathic scoliosis patients. Pediatr Crit Care Med 3: 364–369CrossRefPubMedGoogle Scholar
  39. 39.
    Lawhon SM, Kahn A, Crawford AH, Brinker MS (1984) Controlled hypotensive anesthesia during spinal surgery: a retrospective study. Spine 9:450–453PubMedGoogle Scholar
  40. 40.
    Lenke LG, Bridwell K, Baldus C, Blanke K, Schoenecker PL (1992) Cotrel-Dubousset instrumentation for adolescent idiopathic scoliosis. J Bone Joint Surg 74A:1056–1067Google Scholar
  41. 41.
    Lonstein JE, Akbarnia BA (1983) Operative treatment of spinal deformities in patients with cerebral palsy or mental retardation. J Bone Joint Surg 65A:43–55Google Scholar
  42. 42.
    Lovallo JL, Banta JV, Renshaw TS (1986) Adolescent idiopathic scoliosis treated by Harrington-rod distraction and fusion. J Bone Joint Surg 68A: 1326–1330Google Scholar
  43. 43.
    Lowe TG, Peters JD (1993) Anterior spinal fusion with Zielke instrumentation for idiopathic scoliosis: a frontal and sagittal curve analysis in 36 patients. Spine 18:423–426PubMedGoogle Scholar
  44. 44.
    Majad ME, Castro FP, Holt RT (2000) Anterior fusion for idiopathic scoliosis. Spine 25:696–702CrossRefPubMedGoogle Scholar
  45. 45.
    Marchesi D, Arlet V, Stricker U, Aebi M (1997) Modification of the original Luque technique in the treatment of Duchenne’s neuromuscular scoliosis. J Pediatr Orthop 17:743–749CrossRefPubMedGoogle Scholar
  46. 46.
    McMaster M (1991) Luque rod instrumentation in the treatment of adolescent idiopathic scoliosis: a comparative study with Harrington instrumentation. J Bone Joint Surg 73B:982–989Google Scholar
  47. 47.
    Meert KL, Kannan S, Mooney JF (2002) Predictors of red cell transfusion in children and adolescents undergoing spinal fusion surgery. Spine 27:2137–2142CrossRefPubMedGoogle Scholar
  48. 48.
    Moran MM, Kroon D, Tredwell SJ, Wadsworth LD (1995) The role of autologous blood transfusion in adolescents undergoing spinal surgery. Spine 20:532–536PubMedGoogle Scholar
  49. 49.
    Moskowitz A, Trommanhauser S (1993) Surgical and clinical results of scoliosis surgery using Zielke instrumentation. Spine 18:2444–2451PubMedGoogle Scholar
  50. 50.
    Mubarak SJ, Morin WD, Leach J (1993) Spinal fusion in Duchenne muscular dystrophy — fixation and fusion to the sacropelvis? J Pediatr Orthop 13: 752–757PubMedGoogle Scholar
  51. 51.
    Neustadt JB, Shufflebarger Hl, Cammisa FP (1992) Spinal fusion to the pelvis augmented by Cotrel-Dubousset instrumentation for neuromuscular scoliosis. J Pediatr Orthop 12:465–469PubMedGoogle Scholar
  52. 52.
    Newton PO, Marks M, Faro F, Betz R, Clements D, Haher T, Lenke L, Lowe T, Merola A, Wenger D (2003) Use of video-assisted thoracoscopic surgery to reduce perioperative morbidity in scoliosis surgery. Spine 28:249–254CrossRefGoogle Scholar
  53. 53.
    Newton PO, Wenger DR, Mubarak SJ, Meyer RS (1997) Anterior release and fusion in pediatric spinal deformity: a comparison of early outcome and cost of thoracoscopic and open thoracotomy approaches. Spine 22:1398–1406CrossRefPubMedGoogle Scholar
  54. 54.
    Noordeen MHH, Haddad FS, Muntoni F, Gobbi P, Hollyer JS, Bentley G (1999) Blood loss in Duchenne muscular dystrophy: vascular smooth muscle dysfunction? J Pediatr Orthop B8:212–215Google Scholar
  55. 55.
    Osebold WR, Mayfield JK, Winter RB, Moe JH (1982) Surgical treatment of paralytic scoliosis associated with myelomeningocele. J Bone Joint Surg 64A:841–856Google Scholar
  56. 56.
    Patel NJ, Patel BS, Paskin S, Laufer S, Branch L (1985) Induced moderate hypotensive anesthesia for spinal fusion and Harrington-rod instrumentation. J Bone Joint Surg 67A:1384–1387Google Scholar
  57. 57.
    Pouliquen JC, Jean N, Noat M, Boyer J-M, Yannoutsos H (1990) Les economies de sang en orthopedie pediatrique. Etude a propos de 145 arthrodeses vertebrales posterieures. Chirurgie 116:303–311PubMedGoogle Scholar
  58. 58.
    Ramirez N, Richards BS, Warren PD, Williams GR (1997) Complications after posterior spinal fusion in Duchenne’s muscular dystrophy. J Pediatr Orthop 17:109–114CrossRefPubMedGoogle Scholar
  59. 59.
    Richards BS, Herring JA, Johnston CE, Birch JG, Roach JW (1993) Treatment of adolescent idiopathic scoliosis using Texas Scottish Rite Hospital instrumentation. Spine 19:1598–1605Google Scholar
  60. 60.
    Sakai DN, Hsu JD, Bonnett CA, Brown JC (1977) Stabilization of the collapsing spine in Duchenne muscular dystrophy. Clin Orthop 128:256–260PubMedGoogle Scholar
  61. 61.
    Shapiro F, Sethna N, Colan S, Wohl ME, Specht L (1992) Spinal fusion in Duchenne muscular dystrophy: a multidisciplinary approach. Muscle Nerve 15:604–614CrossRefPubMedGoogle Scholar
  62. 62.
    Shufflebarger HL, Geck MJ, Clark CE (2004) The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis: posterior shortening and pedicle screws. Spine 29:269–276CrossRefPubMedGoogle Scholar
  63. 63.
    Siller TA, Dickson JH, Erwin WD (1996) Efficacy and cost considerations of intraoperative autologous transfusion in spinal fusion for idiopathic scoliosis with predeposited blood. Spine 21:848–852CrossRefPubMedGoogle Scholar
  64. 64.
    Sponseller PD, Whiffen JR, Drummond DS (1986) Interspinous process segmental spinal instrumentation for scoliosis in cerebral palsy. J Pediatr Orthop 6:559–563PubMedGoogle Scholar
  65. 65.
    Swank SM, Brown JC, Perry RE (1982) Spinal fusion in Duchenne’s muscular dystrophy. Spine 7:484–491PubMedGoogle Scholar
  66. 66.
    Swank SM, Cohen DS, Brown JC (1989) Spine fusion in cerebral palsy with l-rod segmental spinal instrumentation: a comparison of single and twostage combined approach with Zielke instrumentation. Spine 14:750–758PubMedGoogle Scholar
  67. 67.
    Tate DE, Friedman RJ (1992) Blood conservation in spinal surgery. Review of current techniques. Spine 17:1450–1456PubMedGoogle Scholar
  68. 68.
    Theroux MC, Corddry DH, Tietz AE, Miller F, Peoples JD, Kettrick RG (1997) A study of desmopressin and blood loss during spinal fusion for neuromuscular scoliosis. Anesthesiology 87:260–267CrossRefPubMedGoogle Scholar
  69. 69.
    Turi M, Johnston CE, Richards BS (1993) Anterior correction of idiopathic scoliosis using TSRH instrumentation. Spine 18:417–422PubMedGoogle Scholar
  70. 70.
    Weimann RL, Gibson DA, Moseley CF, Jones DC (1983) Surgical stabilization of the spine in Duchenne muscular dystrophy. Spine 8:776–780PubMedGoogle Scholar
  71. 71.
    Youngman PME, Edgar MA (1985) Posterior spinal fusion and instrumentation in the treatment of adolescent idiopathic scoliosis. Ann R Coll Surg Engl 67:313–317PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Frederic Shapiro
    • 1
  • Navil Sethna
    • 2
  1. 1.Department of Orthopaedic SurgeryChildren’s Hospital BostonBostonUSA
  2. 2.Department of Anesthesiology, Perioperative and Pain MedicineChildren’s Hospital BostonBostonUSA

Personalised recommendations