Skip to main content

Systematisation of the Interactions between Hydrological and related Cycles

  • Chapter
  • 711 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalati W, Steffen K (1997) Snowmelt on the Greenland ice sheet as derived from passive microwave satellite data. J Climate 10:165–175

    Article  Google Scholar 

  • Anderson EA (1976) A point energy and mass balance model of snow cover. NOAA Technical Memorandum NWS Hydro-17. US Department of Commerce, Silver Springs, MD, p217

    Google Scholar 

  • Aris R (1961) The optimal design of chemical reactors. Acad. Press, New York, p191

    Google Scholar 

  • Avissar R, Pielke RA (1989) A parameterization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology. Mon Weather Rev 117:2113–2136

    Article  Google Scholar 

  • Baker JM, Davis KJ, Liknes GC (1999) Surface energy balance and boundary layer development during snowmelt. J Geophys Res 104D: 19611–19621

    Article  Google Scholar 

  • Band LE, Patterson P, Nemani R, Running SW (1993) Forest ecosystem processes at the watershed scale: Incorporating hillslope hydrology. Agr Forest Meteorol 63:93–126

    Article  Google Scholar 

  • Bear J, Verruijt A (1987) Modeling groundwater flow and pollution. D. Reidel Publ, Dordrecht, p414

    Google Scholar 

  • Cayan D (1996) Interannual climate variability and snowpack in the western United States. J Climate 9:928–948

    Article  Google Scholar 

  • Chen F, Mitchell K, Schaake J, Xue Y, Pan H-L, Koren V, Duan QY, Ek M, Betts A (1996) Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J Geophys Res 101D:7251–7268

    Article  Google Scholar 

  • Claussen M (1997) Modeling bio-geophysical feedback in the African and Indian monsoon region. Clim Dyn 13:247–257

    Article  Google Scholar 

  • Cline DW (1997) Effect of seasonality of snow accumulation and melt on snow surface energy exchanges at a continental alpine site. J Appl Meteorol 36:32–51

    Article  Google Scholar 

  • Cotton WR, Stephens MA, Nehrkorn T, Tripoli GJ (1982) The Colorado State University three-dimensional cloud/ mesoscale model. Part II: An ice phase parameterization. J Recherche Atmos 16:295–320

    Google Scholar 

  • Cunge J (1989) Review of recent developments in river modelling. In: Fallower RA, Goodwin P, Matthew RGS (eds) Hydraulics and environmental modelling of coastal, estuarine and river waters. Proc. Int. Conf. Bradford, Gower Technical, Aldershot, pp393–410

    Google Scholar 

  • Deardorf JW (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J Geophys Res 84C: 1889–1903

    Google Scholar 

  • DUFLOW (1998) Reference manual version 1.0. Stichting Toegepast Onderzoek Waterbeheer (stowa), Zoetermeer (NL)

    Google Scholar 

  • Ehlig C (1977) Comparison of numerical methods for solution of the diffusion-convection equation in one and two dimensions. In: Gray WG, Pinder GF, Brebbia CA (eds) Finite elements. Water Res, 1. Conf., Pentech. London, pp71–102

    Google Scholar 

  • Eppel DP, Kapitza H, Claussen M, Jacob D, Koch W, Levkov L, Mengelkamp H-T, Werrmann N (1995) The non-hydrostatic mesoscale model GESIMA. Part II: Parameterizations and applications. Contrib Atmos Phys 68:15–41

    Google Scholar 

  • Famiglietti J, Wood EF (1991) Evapotranspiration and runoff for large land areas: Land surface hydrology for atmospheric General Circulation Models. Surv Geophys 12:179–204

    Article  Google Scholar 

  • Foster J, Liston G, Koster R, Essery R, Behr H, Dümenil L, Verseghy D, Thompson S, Pollard D, Cohen J (1996) Snow cover mass intercomparison of General Circulation Models and remotely sensed datasets. J Climate 9:409–426

    Article  Google Scholar 

  • Friedrich K, Mölders N, Tetzlaff G (2000) On the influence of surface heterogeneity on the Bowen-ratio: A theoretical case study. Theor Appl Climatol 65: 181–196

    Article  Google Scholar 

  • Fröhlich K, Mölders, N (2002) Investigations on the impact of explicitly predicted snow metamorphism on the microclimate simulated by a meso-beta/gammascale non-hydrostatic model. Atmos Res 62:71–109

    Article  Google Scholar 

  • Giorgi F, Avissar R (1997) Representation of heterogeneity effects in earth system modeling: Experience from land surface modeling. Rev Geophys 35:413–438

    Article  Google Scholar 

  • Graham LP, Bergström S (2000) Land surface modelling in hydrology and meteorology — lessons learned from the Baltic Basin. Hydrol Earth Syst Sci 4:13–22

    Google Scholar 

  • Hagemann S, Dümenil L (1998) A parameterization of the lateral waterflow for the global scale. Clim Dyn 14:17–31

    Article  Google Scholar 

  • Holzbecher E (1998) Modeling density-driven flow in porous media. Springer Publ, New York, p286

    Google Scholar 

  • Holzbecher E (2000) Characterisation of heat and mass transfer in porous media. 16th IMACS World Congress, Lausanne

    Google Scholar 

  • Imboden DM, Lerman A (1978) Chemical models of lakes. In: Lerman A (ed) Lakes — chemistry, geology, physics. Springer Publ, New York, pp341–356

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) Assessment report climate change 2001: The scientific basis. Cambridge University Press, p980

    Google Scholar 

  • Jørgensen SE (1995) State-of-the-art management models for lakes and reservoirs. Lakes & Reservoirs: Res Manage 1:79–87

    Google Scholar 

  • Kinzelbach W (1986) Groundwater modelling. Elsevier, Amsterdam, p333

    Google Scholar 

  • Kramm G, Dlugi R, Mölders N, Müller H (1994) Numerical investigations of the dry deposition of reactive trace gases. In: Baldasano JM, Brebbia CA, Power H, Zannetti P (eds) Air pollution II Vol. 1: Computer Simulation. Computational Mechanics Publications, Southhampton Boston, pp285–307

    Google Scholar 

  • Kramm G, Beier N, Foken T, Müller H, Schröder P, Seiler W (1996) A SVAT scheme for NO, NO2, and O3 — model description and test results. Meteorol Atmos Phys 61:89–106

    Article  Google Scholar 

  • Leung LR, Ghan SJ (1995) A subgrid parameterization of orographic precipitation. Theor Appl Climatol 52:95–118

    Article  Google Scholar 

  • Leung LR, Wigmosta MS, Ghan SJ, Epstein DJ, Vail LW (1996) Application of a subgrid orographic precipitation/surface hydrology scheme to a mountain watershed. J Geophys Res 101:12803–12817

    Article  Google Scholar 

  • Lin B-L, Sakoda A, Shibasaki R, Goto N, Suzuki M (2000) Modelling a global biogeochemical cycle in terrestrial ecosystems. Ecol Mod, 135:89–110

    Article  Google Scholar 

  • Liston GE, Sud YC, Wood EF (1994) Evaluating GCM land surface hydrology parameterizations by computing river discharges using a runoff routing model: Application to the Mississippi Basin. J Appl Meteorol 33:394–405

    Article  Google Scholar 

  • Manabe S (1969) Climate and ocean circulation. 1. The atmospheric circulation and the hydrology of the earth’s surface. Mon Weather Rev 97:739–774

    Google Scholar 

  • Maniak U (1996) Gitterpunktgestütztes Flußgebietsmodell als Abflußmodul eines Wasserhaushalts-bzw. Klimamodells. Zwischenbericht. Leichtweiß-Institut, TU Braunschweig

    Google Scholar 

  • Mengelkamp H-T, Warrach K, Raschke E (1999) SEWAB — a parameterization of the surface energy and water balance for atmospheric and hydrologic models. Adv Water Resourc 23:165–175

    Article  Google Scholar 

  • Miller JR, Russel GL, Caliri G (1994) Continental-scale river flow in climate models. J Climate 7:914–928

    Article  Google Scholar 

  • Mölders N (1999) On the effects of different flooding stages of the Odra and different landuse types on the local distributions of evapotranspiration, cloudiness and rainfall in the Brandenburg-Polish border area. Contrib Atmos Phys 72:1–24

    Google Scholar 

  • Mölders N (2001) Concepts for coupling hydrological and meteorological models. In: Arnold K, Raabe A (eds) Meteorologische Arbeiten aus Leipzig (VI), Wiss Mitt, Leipzig, 22:1–15

    Google Scholar 

  • Mölders N, Raabe A (1997) Testing the effect of a two-way-coupling of a meteorological and a hydrologic model on the predicted local weather. Atmos Res 45:81–108

    Article  Google Scholar 

  • Mölders N, Rühaak W (2002) On the impact of explicitly predicted runoff on the simulated atmospheric response to small-scale land-use changes — an integrated modeling approach. Atmos Res 63:3–38

    Article  Google Scholar 

  • Mölders N, Walsh JE (2004) Atmospheric response to soil-frost and snow in Alaska in March. Theor Appl Climatol 77:77–105

    Article  Google Scholar 

  • Mölders N, Hass H, Jakobs HJ, Laube M, Ebel A (1994) Some effects of different cloud parameterizations in a mesoscale model and a chemistry transport model. J Appl Meteorol 33:527–545

    Article  Google Scholar 

  • Mölders N, Raabe A, Tetzlaff G (1996) A comparison of two strategies on land surface heterogeneity used in a mesoscale-ß meteorological model. Tellus 48A:733–749

    Google Scholar 

  • Mölders N, Kramm G, Laube M, Raabe A (1997) On the influence of bulk-parameterization schemes of cloud microphysics on the predicted water-cycle relevant quantities — a case study. Meteorol Z 6:21–32

    Google Scholar 

  • Mölders N, Raabe A, Beckmann T (1999) A technique to downscale meteorological quantities for the use in hydrologic models — description and first results. IAHS 254:89–98

    Google Scholar 

  • Müller E, Foken T, Heise E, Majewski D (1995) LITFASS — a nucleus for a BALTEX field experiment. DWD Arbeitsergebnisse No. 33

    Google Scholar 

  • Nield DA, Bejan A (1992) Convection in porous media. Springer Publ, New York, p408

    Google Scholar 

  • Orlob GT (ed) (1983) Mathematical modeling of water quality — streams, lakes and reservoirs. Wiley, Chichester, p518

    Google Scholar 

  • Parkhurst DL (1995) PHREEQC: A computer program for speciation, reaction-path, advective transport, and inverse geochemical calculations. U.S. Geol. Surv., Water Res. Invest. Report 95-4227, Lakewood, p143

    Google Scholar 

  • Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki S, Rahmstorf S (2000) CLIMBER-2: A climate system model of intermediate complexity. Part I. Clim Dyn 16:1–17

    Google Scholar 

  • Peyret R, Taylor TD (1985) Computational methods in fluid flow. Springer Publ, New York, p258

    Google Scholar 

  • Plüss C, Ohmura A (1997) Longwave radiation on snow-covered mountainous surfaces. J Appl Meteorol 36:818–824

    Google Scholar 

  • Prandtl L (1952) Essentials of fluid dynamics; with applications to hydraulics, aeronautics, meteorology and other subjects. Blackie, London, p452

    Google Scholar 

  • Prandtl L (1965) Führer durch die Strömungslehre. Vieweg, Braunschweig, p523

    Google Scholar 

  • Pyles RD (2000) The development and testing of the UCD advanced canopy-atmosphere-soil algorithm (ACASA) for use in climate prediction and field studies. Ph.D. Thesis, University of California at Davis

    Google Scholar 

  • Rajar R, Cetina M (1995) Hydrodynamic models as a basis for water quality modelling: A review. In: Wrobel LC, Latinopoulos P (eds) Water pollution III — modelling, measuring and prediction. Computational Mechanics Publications, Southampton, pp199–211

    Google Scholar 

  • Robinson DA, Serreze MC, Barry RG, Scharfen G, Kukla G (1992) Large scale patterns and variability of snowmelt and parameterized surface albedo in the Arctic Basin. J Climate 5:1109–1119

    Article  Google Scholar 

  • Robock A (1985) An updated climatic feedback diagram. B Am Meteorol Soc 66: 786–787

    Article  Google Scholar 

  • Rodi W (1980) Turbulence models and their application in hydraulics — a state-of-the-art review. IAHR publication, Delft

    Google Scholar 

  • Saaltink MW, Ayora C, Carrera J (1998) A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resour Res 34(7): 1649–1656

    Article  Google Scholar 

  • Sausen R, Schubert S, Dümenil L (1994) A model of the river runoff for use in coupled atmosphere-ocean models. J Hydrol 155:337–352

    Article  Google Scholar 

  • Savijärvi H (1992) On surface temperature and moisture prediction in atmospheric models. Beitr Phys Atmos 65(4):281–292

    Google Scholar 

  • Scheidegger AE (1961) General theory of dispersion in porous media. J Geophys Res 66:3273–3278

    Google Scholar 

  • Steefel CI, MacQuarrie KTB (1996). Approaches to modeling of reactive transport in porous media. In: Lichtner PC, Steefel CI, Oelkers EH (eds) Reactive transport in porous media. Mineral Soc Am, Rev Mineralogy 34:83–129

    Google Scholar 

  • Stieglitz M, Rind D, Famiglietti JS, Rosenzweig C (1997) An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J Climate 10:118–137

    Google Scholar 

  • van Genuchten MTh (1977) On the accuracy and efficiency of several numerical schemes for solving the convective dispersive equation. In: Gray WG, Pinder GF, Brebbia CA (eds) Finite elements. Water Res, 1. Conf., Pentech. London, pp71–102

    Google Scholar 

  • Vasiliev OF (1987) System modelling of the interaction between surface and ground waters in problems of hydrology. Hydrol. Sci J 32(3):297–311

    Google Scholar 

  • von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime. J Climate 6:1161–1171

    Article  Google Scholar 

  • Walko RL, Band LE, Baron J, Kittel TGF, Lammers R, Lee TJ, Ojima D, Pielke RA Sr, Taylor C, Tague C, Tremback CJ, Vidale PL (2000) Coupled atmosphere-biophysics-hydrology models for environmental modeling. J Appl Meteorol 39:931–944

    Article  Google Scholar 

  • Walter GG, Contreras M (1999) Compartmental modeling with networks. Birkhäuser, Boston

    Google Scholar 

  • Yeh GT, Cheng HP (1996) On diagonalization of coupled hydrological and geochemical reaction equations. In: Wheeler MF (ed) Environmental studies. Springer Publ, New York, pp373–398

    Google Scholar 

  • Ziemann A (1998) Numerical simulations of meteorological quantities in and above forest canopies. Meteorol Z 7:120–128

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Systematisation of the Interactions between Hydrological and related Cycles. In: Bronstert, A., Carrera, J., Kabat, P., Lütkemeier, S. (eds) Coupled Models for the Hydrological Cycle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27325-5_3

Download citation

Publish with us

Policies and ethics