Skip to main content

DNA Methylation in Epigenetic Control of Gene Expression

  • Chapter
Epigenetics and Chromatin

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 38))

Abstract

Over three decades ago DNA methylation had been suggested to play a role in the regulation of gene expression. This chapter reviews the development of this field of research over the last three decades, from the time when this idea was proposed up until now when the molecular mechanisms involved in the effect of DNA methylation on gene expression are becoming common knowledge. The dynamic changes that the DNA methylation pattern undergoes during gametogenesis and embryo development have now been revealed. The three-way connection between DNA methylation, chromatin structure and gene expression has been recently clarified and the interrelationships between DNA methylation and histone modification are currently under investigation. DNA methylation is implicated in developmental processes such as X-chromosome inactivation, genomic imprinting and disease, including tumor development. This chapter discusses all these issues in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genet 23:185–188

    Article  PubMed  Google Scholar 

  • Ariel M, Robinson E, McCarrey JR, Cedar H (1995) Gamete-specific methylation imprints on the Xist gene. Nature Genet 9:312–315

    Article  PubMed  Google Scholar 

  • Ball DJ, Gross DS, Garrard WT (1983) 5-methylcytosine is localized in nucleosomes that contain histone H1. Proc Natl Acad Sci USA 80:5490–5494

    PubMed  Google Scholar 

  • Becker PB, Ruppert S, Schultz G (1987) Genomic footprinting reveals cell type-specific DNA binding of ubiquitous factors. Cell 51:435–443

    Article  PubMed  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98:387–396

    Article  PubMed  Google Scholar 

  • Ben-Hattar J, Beard P, Jiricny J (1989) Cytosine methylation in CTF and Sp1 recognition sites of an HSV tk promoter: effects on transcription in vivo and on factor binding in vitro. Nucleic Acids Res 17:10179–10190

    PubMed  Google Scholar 

  • Benvenisty N, Mencher D, Meyuchas O, Razin A, Reshef L (1985) Sequential changes in DNA methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development. Proc Natl Acad Sci USA 82:267–271

    PubMed  Google Scholar 

  • Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci USA 80:5559–5563

    PubMed  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Google Scholar 

  • Bourc’his D, Miniou P, Jeanpierre M, Molina Gomes D, Dupont J, De Saint-Basile G, Maraschio P, Tiepolo L, Viegas-Pequignot E (1999) Abnormal methylation does not prevent X inactivation in ICF patients. Cytogenet Cell Genet84:245–252

    Article  PubMed  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    Google Scholar 

  • Brandeis M, Kafri T, Ariel M, Chaillet JR, McCarrey J, Razin A, Cedar H (1993) The ontogeny of allele-specific methylation associated with imprinted genes in the mouse. EMBO J 12:3669–3677

    PubMed  Google Scholar 

  • Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Nemes A, Temper V, Razin A, Cedar H (1994) Sp1 elements protect a CpG island from de novo methylation. Nature 371:435–438

    Article  PubMed  Google Scholar 

  • Brown KW, Villar AJ, Bickmore W, Clayton-Smith J, Catchpoole D, Maher ER, Reik W (1996) Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet 5:2027–2032

    Article  PubMed  Google Scholar 

  • Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls DR, Horsthemke B (1995) Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet 9:395–400

    PubMed  Google Scholar 

  • Buschhausen G, Wittig B, Graessmann M, Graessmann A (1987) Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci USA 84:1177–1181

    PubMed  Google Scholar 

  • Cattanach BM, Kirk M (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315:496–498

    Article  PubMed  Google Scholar 

  • Coffee B, Zhang F, Warren ST, Reines D (1999) Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells. Nature Genet 22:98–101

    Article  PubMed  Google Scholar 

  • Comb M, Goodman HM (1990) CpG methylation inhibits proenkephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Res 18:3975–3982

    PubMed  Google Scholar 

  • Eden S, Hashimshony T, Keshet I, Thorne AW, Cedar H (1998) DNA methylation models histone acetylation. Nature 394:842–843

    Article  PubMed  Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721

    PubMed  Google Scholar 

  • Endres M, Meisel A, Biniszkiewicz D, Namura S, Prass K, Ruscher K, Lipski A, Jaenisch R, Moskowitz MA, Dirnagl U (2000) DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 20:3175–3181

    PubMed  Google Scholar 

  • Feng Q, Zhang Y (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15:827–832

    PubMed  Google Scholar 

  • Frank D, Keshet I, Shani M, Levine A, Razin A, Cedar H (1991) Demethylation of CpG islands in embryonic cells. Nature 351:239–241

    Article  PubMed  Google Scholar 

  • Fujita N, Takebayashi S, Okumura K, Kudo S, Chiba T, Saya H, Nakao M (1999) Methylationmediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol 19:6415–6426

    PubMed  Google Scholar 

  • Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20:2536–2544

    Article  PubMed  Google Scholar 

  • Gibbons RJ, McDowell TL, Raman S, O’Rourke DM, Garrick D, Ayyub H, Higgs DR (2000) Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet 24:368–371

    Article  PubMed  Google Scholar 

  • Goto K, Numata M, Komura JI, Ono T, Bestor TH, Kondo H (1994) Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 56:39–44

    PubMed  Google Scholar 

  • Gruenbaum Y, Cedar H, Razin A (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 292:620–622

    Article  Google Scholar 

  • Gruenbaum Y, Szyf M, Cedar H, Razin A (1983) Methylation of replicating and post-replicated mouse L-cell DNA. Proc Natl Acad Sci USA 80:4919–4921

    PubMed  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, Gartler SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96:14412–14417

    Article  PubMed  Google Scholar 

  • Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development129:1983–1993

    Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    PubMed  Google Scholar 

  • Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15:710–723

    Article  PubMed  Google Scholar 

  • Hermann R, Hoeveler A, Doerfler W (1989) Sequence-specific methylation in a downstream region of the late E2A promoter of adenovirus type 2 DNA prevents protein binding. J Mol Biol 210:411–415

    Article  PubMed  Google Scholar 

  • Holler M, Westin G, Jiricney J, Schaffner W (1988) Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev 2:1127–1135

    PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    PubMed  Google Scholar 

  • Jones PA (1984) Gene activation by 5-azacytidine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Jones PL, Veenstra GJC, Wade PA, Vermaak D, Kass SU, Landsberg N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet 19:187–191

    Article  PubMed  Google Scholar 

  • Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, Cedar H, Razin A (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germline. Genes Dev 6:705–714

    PubMed  Google Scholar 

  • Kafri T, Gao X, Razin A (1993) Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci USA 90:10558–10562

    PubMed  Google Scholar 

  • Kantor B, Razin A (2001) DNA methylation, histone deacetylase repressory complexes and development. Gene Funct Dis 2:69–75

    Article  Google Scholar 

  • Kantor B, Makedonski K, Shemer R, Razin A (2003) Expression and localization of components of the histone deacetylases multiprotein repressory complexes in the mouse preimplantation embryo. Gene Exp Pattern 3:697–702

    Article  Google Scholar 

  • Kass SU, Landsberger N, Wolffe AP (1997) DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 7:157–165

    Article  PubMed  Google Scholar 

  • Keshet I, Yisraeli J, Cedar H (1985) Effect of hybrid methylation on gene transcription. Proc Natl Acad Sci USA 82:2560–2564

    PubMed  Google Scholar 

  • Keshet I, Lieman-Hurwitz J, Cedar H (1986) DNA methylation affects the formation of active chromatin. Cell 44:535–543

    Article  PubMed  Google Scholar 

  • Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A, Bourc’his D, Viegas-Pequignot E, Ehrlich M, Hanash SM (2000) Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet 9:597–604

    Article  PubMed  Google Scholar 

  • Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914

    Article  PubMed  Google Scholar 

  • Lyle R, Watanabe D, te Vruchte D, Lerchner W, Smrzka OW, Wutz A, Schageman J, Hahner L, Davies C, Barlow DP (2000) The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25:19–21

    Article  PubMed  Google Scholar 

  • McCarrey JR (1993) Development of the germ cell. In: Desjardins C, Ewing LL (eds) Cell and molecular biology of the testis. Oxford University Press, Oxford, pp 58–89

    Google Scholar 

  • McGrath J, Solter D (1984) Complementation of mouse embryogenesis requires both maternal and paternal genomes. Cell 37:179–183

    Article  PubMed  Google Scholar 

  • Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507

    Article  PubMed  Google Scholar 

  • Meehan RR, Lewis JD, Bird AP (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 20:5085–5092

    PubMed  Google Scholar 

  • Miniou P, Jeanpierre M, Blanquet V, Sibella V, Bonneau D, Herbelin C, Fischer A, Niveleau A, Viegas-Pequignot E (1994) Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. Hum Mol Genet 3:2093–2102

    PubMed  Google Scholar 

  • Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–382

    PubMed  Google Scholar 

  • Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21:4886–4892

    PubMed  Google Scholar 

  • Nan X, Tate P, Li E, Bird A (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 16:414–421

    PubMed  Google Scholar 

  • Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481

    Article  PubMed  Google Scholar 

  • Nan X, Ng H-H, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  PubMed  Google Scholar 

  • Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet 23:58–61

    PubMed  Google Scholar 

  • Ng HH, Jeppesen P, Bird A (2000) Active repression of methylated genes by the chromosomal protein MBD1. Mol Cell Biol 20:1394–1406

    Article  PubMed  Google Scholar 

  • Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas MF, Mandel JL (1991) Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252:1097–1102

    PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  Google Scholar 

  • Paulsen M, El-Maarri O, Engemann S, Strodicke M, Franck O, Davies K, Reinhardt R, Reik W, Walter J (2000) Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse. Hum Mol Genet 9:1829–1841

    Article  PubMed  Google Scholar 

  • Perk J, Lande L, Cedar H, Razin A, Shemer R (2002) The imprinting mechanism of the Prader Willi/Angelman regional control center. EMBO J 21:5807–5814

    Article  PubMed  Google Scholar 

  • Razin A (1998) CpG methylation,chromatin structure and gene silencing — a three-way connection. EMBO J 17:4905–4908

    Article  PubMed  Google Scholar 

  • Razin A, Cedar H (1977) Distribution of 5-methylcytosine in chromatin. Proc Natl Acad Sci USA 74:2725–2728

    PubMed  Google Scholar 

  • Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    PubMed  Google Scholar 

  • Razin A, Cedar H (1984) DNA methylation in eukaryotic cells. Int Rev Cytol 92:159–185

    PubMed  Google Scholar 

  • Razin A, Kafri T (1994) DNA methylation from embryo to adult. Prog Nucleic Acids Res Mol Biol 48:53–82

    Google Scholar 

  • Razin A, Cedar H (1994) DNA methylation and genomic imprinting. Cell 77:473–476

    Article  PubMed  Google Scholar 

  • Reis A, Dittrich B, Greger V, Buiting K, Lalande M, Gillessen-Kaesbach G, Anvret M, Horsthemke B (1994) Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet 54:741–747

    PubMed  Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    Google Scholar 

  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    Article  PubMed  Google Scholar 

  • Rougeulle C, Cardoso C, FontÈs M, Colleaux L, Lalande M (1998) An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nat Genet 19:15–16

    PubMed  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet 25:269–277

    Article  PubMed  Google Scholar 

  • Scarano E (1971) The control of gene function in cell differentiation and in embryogenesis. Adv Cytopharmacol 1:13–24

    PubMed  Google Scholar 

  • Shemer R, Eisenberg S, Breslow JL, Razin A (1991) Methylation patterns of the human apoAI-CIII-AIV gene cluster in adult and embryonic tissue suggest dynamic changes in methylation during development. J Biol Chem 266:23676–23681

    PubMed  Google Scholar 

  • Shemer R, Birger Y, Riggs AD, Razin A (1997) Structure of the imprinted mouse Snrpn gene and establishment of its parental-specific methylation pattern. Proc Natl Acad Sci USA 94:10267–10272

    Article  PubMed  Google Scholar 

  • Shemer R, Hershko AY, Perk J, Mostoslavsky R, Tsuberi B-Z, Cedar H, Buiting K, Razin A (2000) The imprinting box of the Prader-Willi/Angelman syndrome domain. Nat Genet 26:440–443

    Article  PubMed  Google Scholar 

  • Sinsheimer RL (1955) The action of pancreatic deoxyribonuclease. II. Isomeric dinucleotides. J Biol Chem 215:579–583

    PubMed  Google Scholar 

  • Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, Smallwood AC, Joyce JA, Schofield PN, Reik W, Nicholls RD, Weksberg R, Driscoll DJ, Maher ER, Shows TB, Higgins MJ (1999) A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl Acad Sci USA 96:8064–8069

    Article  PubMed  Google Scholar 

  • Stein R, Razin A, Cedar H (1982) In vitro methylation of the hamster APRT gene inhibits its expression in mouse L-cells. Proc Natl Acad Sci USA 79:3418–3422

    PubMed  Google Scholar 

  • Stoger R, Kubicka P, Liu C-G, Kafri T, Razin A, Cedar H, Barlow DP (1993) Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73:61–71

    Article  PubMed  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    Google Scholar 

  • Sweet RW, Chao MV, Axel R (1982) The structure of the thymidine kinase gene promoter: nuclease hypersensitivity correlates with expression. Cell 31:347–353

    Article  PubMed  Google Scholar 

  • Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

    Article  PubMed  Google Scholar 

  • Tremblay KD, Saam JR, Ingram RS, Tilghman SM, Bartolomei MS (1995) A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet 9:407–413

    Article  PubMed  Google Scholar 

  • Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2:1136–1143

    PubMed  Google Scholar 

  • Yeivin A, Razin A (1993) Gene methylation patterns and expression. In: Jost JP, Saluz HP (eds) DNA methylation: molecular biology and biological significance. Birkhauser, Basel, pp 523–568

    Google Scholar 

  • Yisraeli J, Frank D, Razin A, Cedar H (1988) Effect of in vitro DNA methylation on β globin gene expression. Proc Natl Acad Sci USA 85:4638–4642

    PubMed  Google Scholar 

  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Razin, A., Kantor, B. (2005). DNA Methylation in Epigenetic Control of Gene Expression. In: Jeanteur, P. (eds) Epigenetics and Chromatin. Progress in Molecular and Subcellular Biology, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27310-7_6

Download citation

Publish with us

Policies and ethics