Skip to main content

Two-Phase Flow and Heat Transfer

  • Chapter
Engineering Thermofluids
  • 6676 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berenson, P. J., “Experiments of Pool Boiling Heat Transfer,” Int. Journal of Heat Mass Transfer, 5, 1962.

    Google Scholar 

  • Bernath, L., Transactions of A.I.Ch.E., 1955.

    Google Scholar 

  • Biasi, L., et. al., “Studies on burnout, Part 3. Enrgy Nucl. 14:530, 1967.

    Google Scholar 

  • Bjornard, T. A. and P. Griffith, “PWR Blowdown Heat Transfer,” Symposium on Thermal and Hydraulic Aspects of Nuclear Reactor Safety (Vol. 1). New York, ASME 1977.

    Google Scholar 

  • Bowring, R. W., “Simple but Accurate Round Tube, Uniform Heat Flux Dryout Correlation over the Pressure Range 0.7 to 17 MPa,” AEEW-R-789, U.K. Atomic Energy Authority, 1972.

    Google Scholar 

  • Bromley, L. A., “Heat Transfer in Stable Film Boiling,” Chem. Eng. Prog., 46, 221, 1950.

    Google Scholar 

  • Chen, John C., “A Correlation for Boiling Heat Transfer to Saturated Fluids in Convection Fow,” ASME paper 63-HT-34, 1963.

    Google Scholar 

  • Cheng, S. C, W. Ng, and K. T. Heng, “Measurements of Boiling Curves of Subcooled Water Under Forced Convection Conditions,“ Int. Journal of Heat Mass Transfer 21:1385, 1978.

    Article  Google Scholar 

  • Cichitti, A., et. al., “Two-Phase Cooling Experiments — Pressure Drop, Heat Transfer, and Burnout Measurements,” Energia Nucl. 7:407, 1960.

    Google Scholar 

  • Collier, John G. and Thome, John R., “Convective Boiling and Condensation,” Third Edition, Oxford University Press, 1996.

    Google Scholar 

  • Delhaye, J. M., M. Giot, and M. L. Riethmuller, “Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering,” McGraw Hill/Hemisphere, 1981.

    Google Scholar 

  • Dergarabedian, P., “The Rate of Growth of Bubbles in Superheated Liquid,” Journal of Appl. Mech. Trans. ASME, vol. 75, 1953.

    Google Scholar 

  • Dhir, V. K. and J. H. Lienhard, “Laminar Film Condensation on Planes and Axisymmetric Bodies in Non-uniform Gravity,” Journal of Heat Transfer, 93, 97–100, 1971

    Google Scholar 

  • Duckler, A. E., et. al., “Pressure Drop and Hold-up in Two-Phase Flow: Part A — A Comparison of Existing Correlations. Part B — An Approach Through Similarity Analysis,” AIChE Journal, 10:38, 1964.

    Article  Google Scholar 

  • Fauske, H. F., “The Discharge of Saturated Water Through Tubes,” Chem. Eng. Sym. Series 61:210, 1965.

    Google Scholar 

  • Friedel, L., “Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow, European Two-Phase Flow Group Meeting, Ispra, Italy, 1979.

    Google Scholar 

  • Forster, H. K. and N. Zuber, “Dynamics of Vapor Bubbles and Boiling Heat Transfer,” AIChE Journal, 1(4), 531–535, 1955.

    Article  Google Scholar 

  • Gaspari, G. P., et. al., “A Rod-Centered Subchannel Analysis with Turbulent Mixing for Critical Heat Flux Prediction in Rod Clusters Cooled by Boiling Water,” Proceedings of 5th Int. Heat Transfer Conference, Tokyo, Japan, 3–7, September 1974, CONF-740925, 1975.

    Google Scholar 

  • George, Thomas L., et. al., “GOTHIC Containment Analysis Package, Technical Manual,” Numerical Applications, Inc., Richland, Washington, NAI 8907-06, Rev. 12, July 2001.

    Google Scholar 

  • Ginoux, J. N., “Two-Phase Flow and Heat Transfer,” McGraw Hill/Hemisphere, 1978.

    Google Scholar 

  • Groeneveld, D. C., “Post Dryout Heat Transfer at Reactor Operating Conditions, AECL-4513, 1973.

    Google Scholar 

  • Henry, R. E., “The Two-Phase Critical Discharge of Initially Saturated or Subcooled Liquid,” Nuclear Science and Engineering, 41, 1970, pp 336.

    Google Scholar 

  • Henry, R.E., and H. F. Fauske, “The Two-Phase Critical Flow of One-Component Mixtures in Nozzles, Orifices, and Short Tubes,” Transactions of ASME, Journal of Heat Transfer 93, 179–187, May 1971.

    Google Scholar 

  • Hewitt, G. F. and D. N. Roberts, “Studies of Two-Phase Flow Patterns by Simultaneous X-Ray and Flash Photography,” AERE-M2159, 1969.

    Google Scholar 

  • Hsu, Yih-Yun, “On the Size Range of Active Nucleation Cavities in Nucleate Boiling,” Journal of Heat Transfer, 84C(3), 207–216, 1962.

    Google Scholar 

  • Hsu, Yih-Yun and Robert W. Graham, “Transport Processes in Boiling and Two-Phase Systems, McGraw Hill Publishing Company, 1976.

    Google Scholar 

  • Janssen, E. and Levy, S., “General Electric Company Report APED-3892, 1962.

    Google Scholar 

  • Jens, W. H. and P. A. Lottes, “Analysis of Heat Transfer, Burnout, Pressure Drop, and Density Data for High Pressure Water,” ANL-4627, 1951.

    Google Scholar 

  • Kandlikar, S. G., “A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes,” J. Heat Transfer, 112(1):219–228, 1990.

    Google Scholar 

  • Katto, Y. and Haramura, Y., “Critical Heat Flux on a uniformly heated horizontal cylinder in an upward cross flow of saturated liquid,” Int. Journal Heat Mass Transfer, 26, pp 1199–1205, 1983.

    Google Scholar 

  • Mandhane, J. M. et. al., “A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes,” International Journal of Multiphase flow, 1:537, 1974.

    Article  Google Scholar 

  • —, RELAP-5, MOD1 Code Technical Manual

    Article  Google Scholar 

  • Labuntsov, D. A., “Heat Transfer in Film Condensation of Pure Steam on Vertical Surfaces and Horizontal Tubes,” Teploenergetika, 4, 72, 1957.

    Google Scholar 

  • McAdams, W. H., et. al., “Vaporization Inside Horizontal Tubes. II. Benzene-Oil Mixture, Trans. ASME 64:193, 1942.

    Google Scholar 

  • MacBeth, R. V., “Burn-out Analysis, Part 4. Application of a local condition hypothesis to world data for uniformly heated round tubes and rectangular channels,” AEEW-R 267, 1963.

    Google Scholar 

  • McDonough, J.B., W. Milich, W., and E.C. King, “An Experimental Study of Partial Film Boiling Region with Water at Elevated Pressures in a Round Vertical Tube. Chem. Eng. Prog. Sym. Series 57:197, 1961.

    Google Scholar 

  • Martinelli, R. C. and D. B. Nelson, “Prediction of Pressure Drop During Forced Circulation Boiling of Water,” Trans. ASME 70:695, 1948.

    Google Scholar 

  • Moody, F. J., “Maximum Flow Rate of a Single-Component, Two-Phase Mixture,” Journal of Heat Transfer, Vol. 87, 134–142, February 1965.

    Google Scholar 

  • Moore, K. V. and W. H. Rettig, “RELAP4 — A Computer Program for Transient Thermal-Hydraulic Analysis,” ANCR-1127, Idaho National Laboratory, Idaho Falls, Idaho, 1975.

    Google Scholar 

  • Myer, John E., “Conservation Laws in One-Dimensional Hydrodynamics,” WAPD-BT-20, Sept. 1960.

    Google Scholar 

  • Nahavandi, Amir N and Michael P. Rashevsky, “A Digital Computer Program for Critical Flow Discharge of Two-Phase Steam-Water Mixtures,” CVNA-128, February 1962.

    Google Scholar 

  • Nukiyama, S., “The Maximum and Minimum Values of Heat Transmitted from Metal to Boiling Water Under Atmospheric Pressure,” Int. J. Heat Mass Transfer, 9, 1966.

    Google Scholar 

  • Pei, B. S. et. al., “Evaluations and Modifications of the EPRI-1 Correlation of PWR Critical Heat Flux

    Google Scholar 

  • Predictions Under Normal & Abnormal Fuel Conditions,” Nuclear Tech., Vol. 75, NO. 2, November 1986.

    Google Scholar 

  • Reddy, D. G., R. S. Sreepada, and Amir. N. Nahavandi, “Two-Phase Friction Multiplier Correlation for High — Pressure Steam Water Flow,” EPRI, NP-2522, July 1982.

    Google Scholar 

  • Scriven, L. E., “On the Dynamics of Bubbles in Superheated Water,” Chem. Eng. Sci., vol. 10, 1959.

    Google Scholar 

  • Stephen, Karl, “Heat Transfer in Condensation and Boiling,” Springer-Verlag, 1992.

    Google Scholar 

  • Tong, L. S., “Boiling Crisis and Critical Heat Flux, TID-25887 NTIS, 1972.

    Google Scholar 

  • Thom, J. R. S., et. al., “Boiling in Subcooled Water During Flow in Tubes and Annuli,” Proc. Int. Mech. Eng. 180:226, 1966.

    Google Scholar 

  • Thom, J. R. S., “Prediction of Pressure Drop During Forced Circulation Boiling of Water,” Int. Journal of Heat Mass Transfer 7:709, 1964.

    Article  Google Scholar 

  • Wallis, G. B., “One Dimensional Two-Phase Flow,” McGraw Hill, New York. 1969.

    Google Scholar 

  • Whalley, P. B., “Boiling, Condensation, and Gas-Liquid Flow,” Oxford University Press, 1990.

    Google Scholar 

  • Winterton, R. H. S., “Thermal Design of Nuclear Reactors,” Pergamon Press, 1981.

    Google Scholar 

  • Zivi, S. M., “Estimation of Steady-State Steam Void Fraction By Means of The Principle of Minimum Entropy Production,” Trans. ASME (J. Heat Transfer), 86, 247–52.

    Google Scholar 

  • Zuber, N, and J. A. Findlay, “Average Volumetric Concentration in Two-Phase Flow Systems,” J. Heat Transfer, 87:453, 1965.

    Google Scholar 

  • Zuber, N., “On the Stability of Boiling Heat Transfer,” Trans. ASME, 80, 1958.

    Google Scholar 

  • Zuber, N. and M. Tribus, “Further Remarks on the Stability of Boiling Heat Transfer,” UCLA, Report No. 58-5, January 1958.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Two-Phase Flow and Heat Transfer. In: Engineering Thermofluids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27280-1_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-27280-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22292-7

  • Online ISBN: 978-3-540-27280-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics