Keywords
- Vascular Endothelial Growth Factor
- Macular Degeneration
- Outer Segment
- Arterioscler Thromb Vasc Biol
- Outer Retina
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Age-Related Eye Disease Study Research Group (2000) Risk factors associated with age-related macular degeneration. A case-control study in the age-related eye disease study: age-related eye disease study report number 3. Ophthalmology 107:2224–2232
Ahmed J, Braun RD, Dunn R, Linsenmeier RA (1993) Oxygen distribution in the macaque retina. Invest Ophthalmol Vis Sci 34:516–521
Aiello LP, Avery RL, Arrigg PG, et al. (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487
Aiello LP, Northrup JM, Keyt BA, et al. (1995) Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol 113:1538–1544
Aiello LP, Pierce EA, Foley ED, et al. (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 92:10457–10461
Allikmets R, Shroyer NF, Singh N, et al. (1997) Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–1807
Ambati J, Anand A, Fernandez S, et al. (2003) An animal model of age-related macular degeneration in senescent Ccl-2-or Ccr-2-deficient mice. Nat Med 9:1390–1397
Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431
Ardelt BK, Borowitz JL, Maduh EU, Swain SL, Isom GE (1994) Cyanide-induced lipid peroxidation in different organs: subcellular distribution and hydroperoxide generation in neuronal cells. Toxicology 89:127–137
AREDS Report No. 8 (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss. Arch Ophthalmol 119:1417–1436
Armstrong D, Ueda To, Ueda Ta, et al. (1998) Lipid peroxide stimulates retinal neovascularization in rabbit retina through expression of TNFa, VEGF, and PDGF. Angiogenesis 2:93–104
Asayama N, Shimada H, Yuzawa M (2000) [Correlation of indocyanine green angiography findings and expression of vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes]. Nippon Ganka Gakkai Zasshi 104:390–395
Baffi J, Byrnes G, Chan CC, Csaky KG (2000) Choroidal neovascularization in the rat induced by adenovirus mediated expression of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 41:3582–3589
Barnstable CJ, Tombran-Tink J (2004) Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res 23:561–577
Barouch FC, Miller JW (2004) Anti-vascular endothelial growth factor strategies for the treatment of choroidal neovascularization from age-related macular degeneration. Int Ophthalmol Clin 44:23–32
Bazan HE, Bazan NG, Feeney-Burns L, Berman ER (1990) Lipids in human lipofuscin-enriched fractions of two age populations. Comparison with rod outer segments and neural retina. Invest Ophthalmol Vis Sci 31:1433–1443
Bernstein PS, Balashov NA, Tsong ED, Rando RR (1997) Retinal tubulin binds macular carotenoids. Invest Ophthalmol Vis Sci 38:167–175
Berse B, Brown LF, Van de Water L, et al. (1992) Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 3:211–220
Bierhaus A, Chevion S, Chevion M, et al. (1997) Advanced glycation end product-induced activation of NF-kappaB is suppressed by alphalipoic acid in cultured endothelial cells. Diabetes 46:1481–1490
Blaauwgeers HG, Holtkamp GM, Rutten H, et al. (1999) Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am J Pathol 155:421–428
Bok D (2002) New insights and new approaches toward the study of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14619–14621
Bonne C, Muller A, Villain M (1998) Free radicals in retinal ischemia. Gen Pharmacol 30:275–280
Boullier A, Bird DA, Chang MK, et al. (2001) Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci 947:214–222
Boulton M, Marshall J (1986) Effects of increasing numbers of phagocytic inclusions on human retinal pigment epithelial cells in culture: a model for aging. Br J Ophthalmol 70:808–815
Boulton M, McKechnie NM, Breda J, et al. (1989) The formation of autofluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci 30:82–89
Braun RD, Linsenmeier RA, Goldstick TK (1995) Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci 36:542–554
Brierley EJ, Johnson MA, Lightowlers RN, et al. (1998) Role of mitochondrial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol 43:217–223
Chawla A, Barak Y, Nagy L, et al. (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52
Chen JC, Fitzke FW, Pauleikhoff D, Bird AC (1992) Functional loss in age-related Bruch’s membrane change with choroidal perfusion defect. Invest Ophthalmol Vis Sci 33:334–340
Chen QM (2000) Replicative senescence and oxidant-induced premature senescence. Beyond the control of cell cycle checkpoints. Ann N Y Acad Sci 908:111–125
Chen Q, Fischer A, Reagan JD, et al. (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 92:4337–4341
Chin L, Artandi SE, Shen Q, et al. (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538
Cho E, Hung S, Willett WC, et al. (2001) Prospective study of dietary fat and the risk of age-related macular degeneration. Am J Clin Nutr 73:209–218
Choe M, Jackson C, Yu BP (1995) Lipid peroxidation contributes to age-related membrane rigidity. Free Radic Biol Med 18:977–984
Chumbley LC (1977) Impressions of eye diseases among Rhodesian Blacks in Mashonaland. S Afr Med J 52:316–318
Connolly DT, Heuvelman DM, Nelson R, et al. (1989) Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84:1470–1478
Crabb JW, Miyagi M, Gu X, et al. (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14682–14687
Curcio CA, Millican CL, Bailey T, Kruth HS (2001) Accumulation of cholesterol with age in human Bruch’s membrane. Invest Ophthalmol Vis Sci 42:265–274
Dawson DW, Volpert OV, Gillis P, et al. (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285:245–248
De La Paz MA, Guy VK, Abou-Donia S, et al. (1999) Analysis of the Stargardt disease gene (ABCR) in age-related macular degeneration. Ophthalmology 106:1531–1536
Delori FC, Dorey CK, Staurenghi G, et al. (1995) In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 36:718–729
Demmig-Adams B, Adams WW 3rd (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153
Dorey CK, Aouididi S, Reynaud X, et al. (1996) Correlation of vascular permeability factor/vascular endothelial growth factor with extraretinal neovascularization in the rat. Arch Ophthalmol 114:1210–1217
Duh EJ, Yang HS, Haller JA, et al. (2004) Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor: implications for ocular angiogenesis. Am J Ophthalmol 137:668–674
Duncan KG, Bailey KR, Kane JP, Schwartz DM (2002) Human retinal pigment epithelial cells express scavenger receptors BI and BII. Biochem Biophys Res Commun 292:1017–1022
Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039
Eichler W, Yafai Y, Keller T, et al. (2004) PEDF derived from glial Muller cells: a possible regulator of retinal angiogenesis. Exp Cell Res 299:68–78
Eldred GE (1995) Lipofuscin fluorophore inhibits lysosomal protein degradation and may cause early stages of macular degeneration. Gerontology 41 Suppl 2:15–28
Eldred GE, Katz ML (1988) Fluorophores of the human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 47:71–86
Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–726
Enholm B, Paavonen K, Ristimaki A, et al. (1997) Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14:2475–2483
Espinosa-Heidmann DG, Suner IJ, Hernandez EP, et al. (2003) Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3586–3592
Eyetech Study Group (2003) Anti-vascular endothelial growth factor therapy for subfoveal choroidal neovascularization secondary to age-related macular degeneration: phase II study results. Ophthalmology 110:979–986
Feeney-Burns L, Berman ER, Rothman H (1980) Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 90:783–791
Fishkin N, Jang YP, Itagaki Y, et al. (2003) A2-rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org Biomol Chem 7:1101–1105
Folkman J (1997) Angiogenesis and angiogenesis inhibition: an overview. EXS 79:1–8
Fu MX, Requena JR, Jenkins AJ, et al. (1996) The advanced glycation end product, Nepsilon-(carboxymethyl)lysine, is a product of both lipid peroxidation and glycoxidation reactions. J Biol Chem 271:9982–9986
Fukuzumi K (1986) Relationship between lipoperoxides and diseases. J Environ Pathol Toxicol Oncol 6:25–56
Gaillard ER, Atherton SJ, Eldred G, Dillon J (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61:448–453
Gao H, Hollyfield JG (1992) Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33:1–17
Gehlbach P, Demetriades AM, Yamamoto S, et al. (2003) Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization. Gene Ther 10:637–646
Gillotte KL, Horkko S, Witztum JL, Steinberg D (2000) Oxidized phospholipids, linked to apolipoprotein B of oxidized LDL, are ligands for macrophage scavenger receptors. J Lipid Res 41:824–833
Gohil K, Packer L (2002) Bioflavonoid-rich botanical extracts show antioxidant and gene regulatory activity. Ann N Y Acad Sci 957:70–77
Gohil K, Moy RK, Farzin S, et al. (2001) mRNA expression profile of a human cancer cell line in response to Ginkgo biloba extract: induction of antioxidant response and the Golgi system. Free Radic Res 33:831–849
Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361
Green WR (1999) Histopathology of age-related macular degeneration. Mol Vis 5:27
Green WR, Enger C (1993) Age-related macular degeneration histopathologic studies. The 1992 Lorenz E. Zimmerman Lecture. Ophthalmology 100:1519–1535
Gregor Z, Joffe L (1978) Senile macular changes in the black African. Br J Ophthalmol 62:547–550
Grossniklaus HE, Green WR (1998) Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group. Arch Ophthalmol 116:745–749
Grunwald JE, Hariprasad SM, DuPont J, et al. (1998) Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 39:385–390
Hagen TM, Yowe DL, Bartholomew JC, et al. (1997) Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci U S A 94:3064–3069
Hammes HP, Hoerauf H, Alt A, et al. (1999) N(epsilon)(carboxymethyl)lysin and the AGE receptor RAGE colocalize in age-related macular degeneration. Invest Ophthalmol Vis Sci 40:1855–1859
Han J, Hajjar DP, Febbraio M, Nicholson AC (1997) Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem 272:21654–21659
Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147
Hashimoto E, Kage K, Ogita T, et al. (1994) Adenosine as an endogenous mediator of hypoxia for induction of vascular endothelial growth factor mRNA in U-937 cells. Biochem Biophys Res Commun 204:318–324
Hasty P, Campisi J, Hoeijmakers J, et al. (2003) Aging and genome maintenance: lessons from the mouse? Science 299:1355–1359
Haugh LM, Linsenmeier RA, Goldstick TK (1990) Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination. Ann Biomed Eng 18:19–36
Hayasaka S (1989) Aging changes in lipofuscin, lysosomes and melanin in the macular area of human retina and choroid. Jpn J Ophthalmol 33:36–42
Hirata C, Nakano K, Nakamura N, et al. (1997) Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells. Biochem Biophys Res Commun 236:712–715
Holekamp NM, Bouck N, Volpert O (2002) Pigment epithelium-derived factor is deficient in the vitreous of patients with choroidal neovascularization due to age-related macular degeneration. Am J Ophthalmol 134:220–227
Holz FG, Sheraidah G, Pauleikhoff D, et al. (1994) Analysis of lipid deposits extracted from human macular and peripheral Bruch’s membrane. Arch Ophthalmol 112:402–406
Holz FG, Owens SL, Marks J, et al. (1997) Ultrastructural findings in autosomal dominant drusen. Arch Ophthalmol 115:788–792
Holz FG, Bellman C, Staudt S, et al. (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42:1051–1056
Holz FG, Pauleikhoff D, Klein R, Bird AC (2004) Pathogenesis of lesions in late age-related macular disease. Am J Ophthalmol 137:504–510
Honda S, Hjelmeland LM, Handa JT (2002) Senescence associated beta galactosidase activity in human retinal pigment epithelial cells exposed to mild hyperoxia in vitro. Br J Ophthalmol 86:159–162
Horiuchi S, Higashi T, Ikeda K, et al. (1996) Advanced glycation end products and their recognition by macrophage and macrophage-derived cells. Diabetes 45Suppl 3:S73–76
Hruszkewycz AM (1988) Evidence for mitochondrial DNA damage by lipid peroxidation. Biochem Biophys Res Commun 153:191–197
Hutchings H, Maitre-Boube M, Tombran-Tink J, Plouet J (2002) Pigment epithelium-derived factor exerts opposite effects on endothelial cells of different phenotypes. Biochem Biophys Res Commun 294:764–769
Hyman LG, Lilienfeld AM, Ferris FL 3rd, Fine SL (1983) Senile macular degeneration: a case-control study. Am J Epidemiol 118:213–227
Imai D, Yoneya S, Gehlbach PL, et al. (2004) Intraocular gene transfer of pigment epithelium-derived factor rescues photoreceptors from light-induced cell death. J Cell Physiol (in press)
Inoue M, Itoh H, Ueda M, et al. (1998) Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98:2108–2116
Inoue M, Itoh H, Tanaka T, et al. (2001) Oxidized LDL regulates vascular endothelial growth factor expression in human macrophages and endothelial cells through activation of peroxisome proliferator-activated receptor-gamma. Arterioscler Thromb Vasc Biol 21:560–566
Ishibashi T, Sorgente N, Patterson R, Ryan SJ (1986) Aging changes in Bruch’s membrane of monkeys: an electron microscopic study. Ophthalmologica 192:179–190
Ishibashi T, Murata T, Hangai M, et al. (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116:1629–1632
Ishida S, Usui T, Yamashiro K, et al. (2003) VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 198:483–489
Ishikawa Y, Kitamura M (2000) Anti-apoptotic effect of quercetin: intervention in the JNK-and ERK-mediated apoptotic pathways. Kidney Int 58:1078–1087
Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245
Janabi M, Yamashita S, Hirano K, et al. (2000) Oxidized LDL-induced NF-kappa B activation and subsequent expression of proinflammatory genes are defective in monocyte-derived macrophages from CD36-deficient patients. Arterioscler Thromb Vasc Biol 20:1953–1960
Jeziorska M, Woolley DE (1999) Neovascularization in early atherosclerotic lesions of human carotid arteries: its potential contribution to plaque development. Hum Pathol 30:919–925
Karwatowski WS, Jeffries TE, Duance VC, et al. (1995) Preparation of Bruch’s membrane and analysis of the age-related changes in the structural collagens. Br J Ophthalmol 79:944–952
Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y (1995) Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 55:5687–5692
Katz ML, Gao CL, Rice LM (1996) Formation of lipofuschin-like fluorophores by reaction of retinal with photoreceptor outer segments and liposomes. Mech Ageing Dev 92:159–174
Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 90:10705–10709
Khan BV, Parthasarathy SS, Alexander RW, Medford RM (1995) Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J Clin Invest 95:1262–1270
Kikugawa K, Beppu M (1987) Involvement of lipid oxidation products in the formation of fluorescent and cross-linked proteins. Chem Phys Lipids 44:277–296
Kikugawa K, Kato T, Beppu M (1989) Fluorescent and cross-linked proteins formed by free radical and aldehyde species generated during lipid oxidation. Adv Exp Med Biol 266:345–356
Killingsworth MC (1995) Angiogenesis in early choroidal neovascularization secondary to age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 233:313–323
Kim I, Ryan AM, Rohan R, et al. (1999) Constitutive expression of VEGF, VEGFR-1, and VEGFR-2 in normal eyes. Invest Ophthalmol Vis Sci 40:2115–2121
Kislinger T, Fu C, Huber B, et al. (1999) N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. Biol Chem 274:31740–31749
Klaver CC, Kliffen M, van Duijn CM, et al. (1998) Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet 63:200–206
Klaver CC, Wolfs RC, Assink JJ, et al. (1998) Genetic risk of age-related maculopathy. Population-based familial aggregation study. Arch Ophthalmol 116:1646–1651
Klein R, Klein BE, Jensen SC, Meuer SM (1997) The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 104:7–21
Klein R, Klein BE, Tomany SC, Cruickshanks KJ (2003) Association of emphysema, gout, and inflammatory markers with long-term incidence of age-related maculopathy. Arch Ophthalmol 121:674–678
Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495
Kondo S, Asano M, Suzuki H (1993) Significance of vascular endothelial growth factor/vascular permeability factor for solid tumor growth, and its inhibition by the antibody. Biochem Biophys Res Commun 194:1234–1241
Korte GE, Pua F (1988) Choriocapillaris regeneration in the rabbit: a study with vascular casts. Acta Anat (Basel) 133:224–228
Krakau CE (1995) A model for pulsatile and steady ocular blood flow. Graefes Arch Clin Exp Ophthalmol 233:112–118
Ku HH, Sohal RS (1993) Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: possible basis of variation in longevity and metabolic potential. Mech Ageing Dev 72:67–76
Ku HH, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627
Kubo H, Fujiwara T, Jussila L, et al. (2000) Involvement of vascular endothelial growth factor receptor-3 in maintenance of integrity of endothelial cell lining during tumor angiogenesis. Blood 96:546–553
Kuroki M, Voest EE, Amano S, et al. (1996) Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 98:1667–1675
Kuzuya M, Ramos MA, Kanda S, et al. (2001) VEGF protects against oxidized LDL toxicity to endothelial cells by an intracellular glutathione-dependent mechanism through the KDR receptor. Arterioscler Thromb Vasc Biol 21:765–770
Kvanta A, Algvere PV, Berglin L, Seregard S (1996) Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 37:1929–1934
Kwak N, Okamoto N, Wood JM, Campochiaro PA (2000) VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci 41:3158–3164
Lelkes PI, Hahn KL, Sukovich DA, et al. (1998) On the possible role of reactive oxygen species in angiogenesis. Adv Exp Med Biol 454:295–310
Li W, Yanoff M, Li Y, He Z (1999) Artificial senescence of bovine retinal pigment epithelial cells induced by near-ultraviolet in vitro. Mech Ageing Dev 110:137–155
Linnane AW, Kopsidas G, Zhang C, et al. (2002) Cellular redox activity of coenzyme Q10: effect of CoQ10 supplementation on human skeletal muscle. Free Radic Res 36:445–453
Linsenmeier RA, Braun RD (1992) Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol 99:177–197
Linsenmeier RA, Padnick-Silver L (2000) Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci 41:3117–3123
Liu J, Itagaki Y, Ben-Shabat S, Nakanishi K, Sparrow JR (2000) The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane. J Biol Chem 275:29354–29360
Lopez PF, Sippy BD, Lambert HM, et al. (1996) Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 37:855–868
Lutty GA, McLeod DS, Merges C, et al. (1996) Localization of vascular endothelial growth factor in human retina and choroid. Arch Ophthalmol 114:971–977
Macular Photocoagulation Study Group (1997) Risk factors for choroidal neovascularization in the second eye of patients with juxtafoveal or subfoveal choroidal neovascularization secondary to age-related macular degeneration. Arch Ophthalmol 115:741–747
Marshall J (1987) The ageing retina: physiology or pathology. Eye 1:282–295
Martin G, Schlunck G, Hansen LL, Agostini HT (2004) Differential expression of angioregulatory factors in normal and CNV-derived human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 242:321–326
Matsuoka M, Ogata N, Otsuji T, et al. (2004) Expression of pigment epithelium derived factor and vascular endothelial growth factor in choroidal neovascular membranes and polypoidal choroidal vasculopathy. Br J Ophthalmol 88:809–815
McColm JR, Geisen P, Hartnett ME (2004) VEGF isoforms and their expression after a single episode of hypoxia or repeated fluctuations between hyperoxia and hypoxia: relevance to clinical ROP. Mol Vis 10:512–520
Melillo G, Musso T, Sica A, et al. (1995) A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med 182:1683–1693
Miller JW, Adamis AP, Shima DT, et al. (1994) Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145:574–584
Minchenko A, Salceda S, Bauer T, Caro J (1994) Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol Biol Res 40:35–39
Miquel J (1998) An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol 33:113–126
Monte M, Davel LE, Sacerdote de Lustig E (1997) Hydrogen peroxide is involved in lymphocyte activation mechanisms to induce angiogenesis. Eur J Cancer 33:676–682
Mori F, Konno S, Hikichi T, et al. (2001) Pulsatile ocular blood flow study: decreases in exudative age related macular degeneration. Br J Ophthalmol 85:531–533
Mori K, Duh E, Gehlbach P, et al. (2001) Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 188:253–263
Morre DJ, Hussain AA, Marshall J (1995) Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 36:1290–1297
Muller K, Carpenter KL, Challis IR, et al. (2002) Carotenoids induce apoptosis in the T-lymphoblast cell line Jurkat E6.1. Free Radic Res 36:791–802
Murata T, Nagai R, Ishibashi T, et al. (1997) The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia 40:764–769
Nicholson AC, Febbraio M, Han J, et al. (2000) CD36 in atherosclerosis. The role of a class B macrophage scavenger receptor. Ann N Y Acad Sci 902:128–131
Nilsson I, Shibuya M, Wennstrom S (2004) Differential activation of vascular genes by hypoxia in primary endothelial cells. Exp Cell Res 299:476–485
Nose K (2000) Role of reactive oxygen species in the regulation of physiological functions. Biol Pharm Bull 23:897–903
O’Brien ER, Garvin MR, Dev R, Stewart DK, et al. (1994) Angiogenesis in human coronary atherosclerotic plaques. Am J Pathol 145:883–894
Ogata N, Wada M, Otsuji T, et al. (2002) Expression of pigment epithelium-derived factor in normal adult rat eye and experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43:1168–1175
Ohno-Matsui K, Morita I, Tombran-Tink J, et al. (2001) Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol 189:323–333
Ohno-Matsui K, Yoshida T, Uetama T, et al. (2003) Vascular endothelial growth factor upregulates pigment epithelium-derived factor expression via VEGFR-1 in human retinal pigment epithelial cells. Biochem Biophys Res Commun 303:962–967
Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1996) Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol 121:181–189
Pang CP, Baum L, Chan WM, et al. (2000) The apolipoprotein E epsilon4 allele is unlikely to be a major risk factor of age-related macular degeneration in Chinese. Ophthalmologica 214:289–291
Pauleikhoff D, Zuels S, Sheraidah GS, et al. (1992) Correlation between biochemical composition and fluorescein binding of deposits in Bruch’s membrane. Ophthalmology 99:1548–1553
Pauleikhoff D, Spital G, Radermacher M, et al. (1999) A fluorescein and indocyanine green angiographic study of choriocapillaris in age-related macular disease. Arch Ophthalmol 117:1353–1358
Pauleikhoff D, Wojteki S, Muller D, et al. (2000) Adhesive properties of basal membranes of Bruch’s membrane. Immunohistochemical studies of age-dependent changes in adhesive molecules and lipid deposits. Ophthalmologe 97:243–250
Penfold PL, Killingsworth MC, Sarks SH (1985) Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 223:69–76
Penfold PL, Killingsworth MC, Sarks SH (1986) Senile macular degeneration. The involvement of giant cells in atrophy of the retinal pigment epithelium. Invest Ophthalmol Vis Sci 27:364–371
Pierce EA, Avery RL, Foley ED, et al. (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci U S A 92:905–909
Piguet B, Palmvang IB, Chisholm IH, et al. (1992) Evolution of age-related macular degeneration with choroidal perfusion abnormality. Am J Ophthalmol 113:657–663
Piotrowski JJ, Shah S, Alexander JJ (1996) Mature human atherosclerotic plaque contains peroxidized phosphatidylcholine as a major lipid peroxide. Life Sci 58:735–740
Rakoczy PE, Baines M, Kennedy CJ, Constable IJ (1996) Correlation between autofluorescent debris accumulation and the presence of partially processed forms of cathepsin D in cultured retinal pigment epithelial cells challenged with rod outer segments. Exp Eye Res 63:159–167
Ramos MA, Kuzuya M, Esaki T, et al. (1998) Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 18:1188–1196
Ramrattan RS, van der Schaft TL, Mooy CM, et al. (1994) Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci 35:2857–2864
Reddy S, Bichler J, Wells-Knecht KJ, et al. (1995) N-epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins. Biochemistry 34:10872–10878
Refsgaard HH, Tsai L, Stadtman ER (2000) Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc Natl Acad Sci U S A 97:611–616
Renno RZ, Youssri AI, Michaud N, et al. (2002) Expression of pigment epithelium-derived factor in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 43:1574–1580
Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108:2369–2379
Ross RD, Barofsky JM, Cohen G, et al. (1998) Presumed macular choroidal watershed vascular filling, choroidal neovascularization, and systemic vascular disease in patients with age-related macular degeneration. Am J Ophthalmol 125:71–80
Ruberti JW, Curcio CA, Millican CL, et al. (2003) Quick-freeze/deep-etch visualization of age-related lipid accumulation in Bruch’s membrane. Invest Ophthalmol Vis Sci 44:1753–1759
Ryan SJ, Hinton DR, Murata T (2001) Choroidal neovascularization. In: Ryan SJ (ed) Retina, vol 3, 3rd edn. Mosby, St. Louis, pp 1005–1006
Ryeom SW, Sparrow JR, Silverstein RL (1996) CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci 109:387–395
Sakurai E, Anand A, Ambati BK, et al. (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3578–3585
Sakurai E, Taguchi H, Anand A, et al. (2003) Targeted disruption of the CD18 or ICAM-1 gene inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 44:2743–2749
Sambrano GR, Parthasarathy S, Steinberg D (1994) Recognition of oxidatively damaged erythrocytes by a macrophage receptor with specificity for oxidized low density lipoprotein. Proc Natl Acad Sci U S A 91:3265–3269
Sandau KB, Faus HG, Brune B (2000) Induction of hypoxia-inducible-factor 1 by nitric oxide is mediated via the PI 3K pathway. Biochem Biophys Res Commun 278:263–267
Saretzki G, Von Zglinicki T (2002) Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci 959:24–29
Sarks JP, Sarks SH, Killingsworth MC (1994) Evolution of soft drusen in age-related macular degeneration. Eye 8:269–283
Sasaki H, Ray PS, Zhu L, et al. (2000) Oxidative stress due to hypoxia/reoxygenation induces angiogenic factor VEGF in adult rat myocardium: possible role of NFkappaB. Toxicology 155:27–35
Schmidt S, Saunders AM, De La Paz MA, et al. (2000) Association of the apolipoprotein E gene with age-related macular degeneration: possible effect modification by family history, age, and gender. Mol Vis 31:287–293
Schott RJ, Morrow LA (1993) Growth factors and angiogenesis. Cardiovasc Res 27:1155–1161
Seddon JM, Ajani UA, Sperduto RD, et al. (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 272:1413–1420
Seddon JM, Rosner B, Sperduto RD, et al. (2001) Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol 119:1191–1199
Seddon JM, Cote J, Rosner B (2003) Progression of age-related macular degeneration: association with dietary fat, transunsaturated fat, nuts, and fish intake. Arch Ophthalmol 121:1728–1737
Seddon JM, Gensler G, Milton RC, et al. (2004) Association between C-reactive protein and age-related macular degeneration. JAMA 291:704–710
Segawa Y, Shirao Y, Yamagishi S, et al. (1998) Upregulation of retinal vascular endothelial growth factor mRNAs in spontaneously diabetic rats without ophthalmoscopic retinopathy. A possible participation of advanced glycation end products in the development of the early phase of diabetic retinopathy. Ophthalmic Res 30:333–339
Senger DR, Ledbetter SR, Claffey KP, et al. (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149:293–305
Shaban H, Richter C (2002) A2E and blue light in the retina: the paradigm of age-related macular degeneration. Biol Chem 383:537–545
Sheraidah G, Steinmetz R, Maguire J, et al. (1993) Correlation between lipids extracted from Bruch’s membrane and age. Ophthalmology 100:47–51
Shi W, Haberland ME, Jien ML, et al. (2000) Endothelial responses to oxidized lipoproteins determine genetic susceptibility to atherosclerosis in mice. Circulation 102:75–81
Shima DT, Adamis AP, Ferrara N, et al. (1995) Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med 1:182–193
Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79:2–10
Singhal SS, Godley BF, Chandra A, et al. (1999) Induction of glutathione S-transferase hGST 5.8 is an early response to oxidative stress in RPE cells. Invest Ophthalmol Vis Sci 40:2652–2659
Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280:C53–60
Skulachev VP (2002) Programmed death phenomena: from organelle to organism. Ann N Y Acad Sci 959:214–237
Smedsrod B, Melkko J, Araki N, et al. (1997) Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem J 322:567–573
Smith W, Mitchell P (1998) Family history and age-related maculopathy: the Blue Mountains Eye Study. Aust N Z J Ophthalmol 26:203–206
Smith W, Mitchell P, Wang JJ (1997) Gender, oestrogen, hormone replacement and age-related macular degeneration: results from the Blue Mountains Eye Study. Aust N Z J Ophthalmol 25 Suppl 1:S13–15
Smith W, Mitchell P, Leeder SR (2000) Dietary fat and fish intake and age-related maculopathy. Arch Ophthalmol 118:401–404
Smith W, Assink J, Klein R, et al. (2001) Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology 108:697–704
Souied EH, Benlian P, Amouyel P, et al. (1998) The epsilon4 allele of the apolipoprotein E gene as a potential protective factor for exudative age-related macular degeneration. Am J Ophthalmol 125:353–359
Soussi T (2000) The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann N Y Acad Sci 910:121–137
Spaide RF (2003) Fundus autofluorescence and age-related macular degeneration. Ophthalmology 110:392–399
Spaide RF (2004) Focal hyperpigmented autofluorescent particles in the outer retina are associated with retinal angiomatous proliferation. (in preparation)
Spaide RF, Ho-Spaide WC, Browne R, Armstrong D (1999) Characterization of lipid peroxides in Bruch’s membrane. Retina 19:141–147
Spaide RF, Armstrong D, Browne R (2003) Continuing medical education review: choroidal neovascularization in age-related macular degeneration — what is the cause? Retina 23:595–614
Sparrow JR, Zhou J, Cai B (2003) DNA is a target of the photodynamic effects elicited in A2E-laden RPE by blue-light illumination. Invest Ophthalmol Vis Sci 44:2245–2251
Spilsbury K, Garrett KL, Shen WY, et al. (2000) Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am J Pathol 157:135–144
Spraul CW, Lang GE, Grossniklaus HE, Lang GK (1999) Histologic and morphometric analysis of the choroid, Bruch’s membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol 44 Suppl 1:S10–32
Starita C, Hussain AA, Marshall J (1995) Decreasing hydraulic conductivity of Bruch’s membrane: Relevance to photoreceptor survival and lipofuscinoses. Am J Med Genet 57:235–237
Starita C, Hussain AA, Patmore A, Marshall J (1997) Localization of the site of major resistance to fluid transport in Bruch’s membrane. Invest Ophthalmol Vis Sci 38:762–767
Suarna C, Dean RT, Southwell-Keeley PT, et al. (1997) Separation and characterization of cholesteryl oxo-and hydroxy-linoleate isolated from human atherosclerotic plaque. Free Radic Res 27:397–408
Subczynski WK, Hyde JS, Kusumi A (1989) Oxygen permeability of phosphatidylcholinecholesterol membranes. Proc Natl Acad Sci U S A 86:4474–4478
Subczynski WK, Hyde JS, Kusumi A (1991) Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes: a pulse ESR spin labeling study. Biochemistry 30:8578–8590
Subczynski WK, Hopwood LE, Hyde JS (1992) Is the mammalian cell plasma membrane a barrier to oxygen transport? J Gen Physiol 100:69–87
Subczynski WK, Renk GE, Crouch RK, et al. (1992) Oxygen diffusion-concentration product in rhodopsin as observed by a pulse ESR spin labeling method. Biophys J 63:573–577
Suter M, Reme C, Grimm C, et al. (2000) Age-related macular degeneration. The lipofuscin component n-retinyl-n-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment epithelial cells. J Biol Chem 275:39625–39630
Takagi H, King GL, Robinson GS, et al. (1996) Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 37:2165–2176
Tamai K, Spaide RF, Ellis EA, et al. (2002) Lipid hydroperoxide stimulates subretinal choroidal neovascularization in the rabbit. Exp Eye Res 74:301–308
Tanaka N, Yonekura H, Yamagishi S, et al. (2000) The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem 275:25781–25790
Terpstra V, Bird DA, Steinberg D (1998) Evidence that the lipid moiety of oxidized low density lipoprotein plays a role in its interaction with macrophage receptors. Proc Natl Acad Sci U S A 95:1806–1811
Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–1028
The Eye Disease Case-Control Study Group (1992) Risk factors for neovascular age-related macular degeneration. Arch Ophthalmol 110:1701–1708
Tsutsumi-Miyahara C, Sonoda KH, Egashira K, et al. (2004) The relative contributions of each subset of ocular infiltrated cells in experimental choroidal neovascularisation. Br J Ophthalmol 88:1217–1222
Ueda To, Ueda Ta, Fukuda S, et al. (1998) Lipid peroxide induced TNFa, VEGF, and neovascularization in the rabbit cornea, effect of TNF inhibition. Angiogenesis 2:174–184
van der Schaft TL, de Bruijn WC, Mooy CM, et al. (1991) Is basal laminar deposit unique for age-related macular degeneration? Arch Ophthalmol 109:420–425
van der Schaft TL, Mooy CM, de Bruijn WC, et al. (1994) Immunohistochemical light and electron microscopy of basal laminar deposit. Graefes Arch Clin Exp Ophthalmol 232:40–46
Vasquez-Vivar J, Kalyanaraman B, Martasek P, et al. (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 95:9220–9225
Vinores SA, Derevjanik NL, Vinores MA, et al. (2000) Sensitivity of different vascular beds in the eye to neovascularization and blood-retinal barrier breakdown in VEGF transgenic mice. Adv Exp Med Biol 476:129–138
Visala Rao D, Boyle GM, Parsons PG, et al. (2003) Influence of ageing, heat shock treatment and in vivo total antioxidant status on gene-expression profile and protein synthesis in human peripheral lymphocytes. Mech Ageing Dev 124:55–69
von Ruckmann A, Fitzke FW, Bird AC (1995) Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 79:407–412
Wang GL, Semenza GL (1993) Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268:21513–21518
Wang JJ, Mitchell P, Smith W (1998) Refractive error and age-related maculopathy: the Blue Mountains Eye Study. Invest Ophthalmol Vis Sci 39:2167–2171
Webster AR, Heon E, Lotery AJ, et al. (2001) An analysis of allelic variation in the ABCA4 gene. Invest Ophthalmol Vis Sci 42:1179–1189
Wiegand RD, Giusto NM, Rapp LM, Anderson RE (1983) Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina. Invest Ophthalmol Vis Sci 24:1433–1435
Wihlmark U, Wrigstad A, Roberg K, et al. (1996) Lipofuscin formation in cultured retinal pigment epithelial cells exposed to photoreceptor outer segment material under different oxygen concentrations. APMIS 104:265–271
Wihlmark U, Wrigstad A, Roberg K, et al. (1997) Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation. Free Radic Biol Med 22:1229–1234
Wing GL, Blanchard GC, Weiter JJ (1978) The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 17:601–607
Wintergerst ES, Jelk J, Rahner C, Asmis R (2000) Apoptosis induced by oxidized low density lipoprotein in human monocyte-derived macrophages involves CD36 and activation of caspase-3. Eur J Biochem 267:6050–6059
Wolf G (1993) Lipofuscin, the age pigment. Nutr Rev 51:205–206
Yan SD, Schmidt AM, Anderson GM, et al. (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889–9897
Yancey CM, Linsenmeier RA (1988) The electroretinogram and choroidal PO2 in the cat during elevated intraocular pressure. Invest Ophthalmol Vis Sci 29:700–707
Yancey CM, Linsenmeier RA (1989) Oxygen distribution and consumption in the cat retina at increased intraocular pressure. Invest Ophthalmol Vis Sci 30:600–611
Yang YC, Hulbert MF, Batterbury M, Clearkin LG (1997) Pulsatile ocular blood flow measurements in healthy eyes: reproducibility and reference values. J Glaucoma 6:175–179
Yin D (1996) Biochemical basis of lipofuscin, ceroid, and age-pigment-like fluoreophores. Free Radic Biol Med 21:871–888
Yin JH, Yang DI, Ku G, Hsu CY (2000) iNOS expression inhibits hypoxia-inducible factor-1 activity. Biochem Biophys Res Commun 279:30–34
Yla-Herttuala S, Palinski W, Rosenfeld ME, et al. (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A 86:1372–1376
Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42:392–403
Zachary I, Mathur A, Yla-Herttuala S, Martin J (2000) Vascular protection: A novel nonangiogenic cardiovascular role for vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 20:1512–1520
Zhang C, Baffi J, Cousins SW, Csaky KG (2003) Oxidant-induced cell death in retinal pigment epithelium cells mediated through the release of apoptosis-inducing factor. J Cell Sci 116:1915–1923
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Spaide, R.F. (2005). Aetiology of Late Age-Related Macular Disease. In: Holz, F.G., Spaide, R.F. (eds) Medical Retina. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27272-0_7
Download citation
DOI: https://doi.org/10.1007/3-540-27272-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22596-6
Online ISBN: 978-3-540-27272-4
eBook Packages: MedicineMedicine (R0)
