Skip to main content

Engineering RNA-Based Circuits

  • Chapter
RNA Towards Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 173))

  • 1098 Accesses

Abstract

Nucleic acids can modulate gene function by base-pairing, via the molecular recognition of proteins and metabolites, and by catalysis. This diversity of functions can be combined with the ability to engineer nucleic acids based on Watson-Crick base-pairing rules to create a modular set of molecular “tools” for biotechnological and medical interventions in cellular metabolism. However, these individual RNA-based tools are most powerful when combined into rational logical or regulatory circuits, and the circuits can in turn be evolved for optimal function. Examples of genetic circuits that control translation and transcription are herein detailed, and more complex circuits with medical applications are anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    CAS  PubMed  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    CAS  PubMed  Google Scholar 

  • Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    Article  CAS  PubMed  Google Scholar 

  • Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839–843

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Argaman L, Hershberg R, Vogel J, Bejerano G, Wagner EG, Margalit H, Altuvia S (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11:941–950

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  CAS  PubMed  Google Scholar 

  • Batey RT, Gilbert SD, Montange RK (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432:411–415

    Article  CAS  PubMed  Google Scholar 

  • Baugh C, Grate D, Wilson C (2000) 2.8 Å crystal structure of the malachite green aptamer. J Mol Biol 301:117–128

    Article  CAS  PubMed  Google Scholar 

  • Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23:337–343

    Article  CAS  PubMed  Google Scholar 

  • Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) Anautonomous molecular computer for logical control of gene expression. Nature 429:423–429

    Article  CAS  PubMed  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    Article  CAS  PubMed  Google Scholar 

  • Blake WJ, M KA, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422:633–637

    Article  CAS  PubMed  Google Scholar 

  • Blount KF, Uhlenbeck OC (2005) The structure-function dilemma of the hammerhead ribozyme. Annu Rev Biophys Biomol Struct 34:415–440

    Article  CAS  PubMed  Google Scholar 

  • Brantl S (2004) Bacterial gene regulation: from transcription attenuation to riboswitches and ribozymes. Trends Microbiol 12:473–475

    Article  CAS  PubMed  Google Scholar 

  • Breaker RR (2004) Natural and engineered nucleic acids as tools to explore biology. Nature 432:838–845

    Article  CAS  PubMed  Google Scholar 

  • Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229

    Article  CAS  PubMed  Google Scholar 

  • Brescia CC, Mikulecky PJ, Feig AL, Sledjeski DD (2003) Identification of the Hfq-binding site on DsrA RNA: Hfq binds without altering DsrA secondary structure. RNA 9:33–43

    Article  CAS  PubMed  Google Scholar 

  • Buskirk AR, Landrigan A, Liu DR (2004a) Engineering a ligand-dependent RNA transcriptional activator. Chem Biol 11:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Buskirk AR, Ong YC, Gartner ZJ, Liu DR (2004b) Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A 101:10505–10510

    Article  CAS  PubMed  Google Scholar 

  • Byun J, Lan N, Long M, Sullenger BA(2003) Efficient and specific repair of sickle beta-globin RNA by trans-splicing ribozymes. RNA 9:1254–1263

    Article  CAS  PubMed  Google Scholar 

  • Carpousis AJ (2002) The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. Biochem Soc Trans 30:150–155

    CAS  PubMed  Google Scholar 

  • Carter RJ, Dubchak I, Holbrook SR (2001) A computational approach to identify genes for functional RNAs in genomic sequences. Nucleic Acids Res 29:3928–3938

    CAS  PubMed  Google Scholar 

  • Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Lesnik EA, Hall TA, Sampath R, Griffey RH, Ecker DJ, Blyn LB (2002) A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems 65:157–177

    CAS  PubMed  Google Scholar 

  • Chen S, Zhang A, Blyn LB, Storz G (2004) MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J Bacteriol 186:6689–6697

    CAS  PubMed  Google Scholar 

  • Citti L, Rainaldi G (2005) Synthetic hammerhead ribozymes as therapeutic tools to control disease genes. Curr Gene Ther 5:11–24

    CAS  PubMed  Google Scholar 

  • Cox JC, Cohen DS, Ellington AD (1999) The complexities of DNA computation. Trends Biotechnol 17:151–154

    Article  CAS  PubMed  Google Scholar 

  • Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 30:e108

    Article  PubMed  Google Scholar 

  • Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  CAS  PubMed  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  PubMed  Google Scholar 

  • Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418:222–228

    Article  CAS  PubMed  Google Scholar 

  • Dykxhoorn DM, Lieberman J (2005) The silent revolution: RNA interference asbasic biology, research tool, and therapeutic. Annu Rev Med 56:401–423

    Article  CAS  PubMed  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  CAS  PubMed  Google Scholar 

  • Emilsson GM, Breaker RR (2002) Deoxyribozymes: new activities and new applications. Cell Mol Life Sci 59:596–607

    CAS  PubMed  Google Scholar 

  • Espinoza CA, Allen TA, Hieb AR, Kugel JF, Goodrich JA (2004) B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat Struct Mol Biol 11:822–829

    Article  CAS  PubMed  Google Scholar 

  • Famulok M, Mayer G (1999) Aptamers as tools in molecular biology and immunology. Curr Top Microbiol Immunol 243:123–136

    CAS  PubMed  Google Scholar 

  • Fan P, Suri AK, Fiala R, Live D, Patel DJ (1996) Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol 258:480–500

    Article  CAS  PubMed  Google Scholar 

  • Ferre-D’Amare AR, Zhou K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature 395:567–574

    CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Fraser AG, Marcotte EM (2004) A probabilistic view of gene function. Nat Genet 36:559–564

    Article  CAS  PubMed  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  PubMed  Google Scholar 

  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol 58:303–328

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124

    CAS  PubMed  Google Scholar 

  • Hesselberth J, Robertson MP, Jhaveri S, Ellington AD (2000) In vitro selection of nucleic acids for diagnostic applications. J Biotechnol 74:15–25

    CAS  PubMed  Google Scholar 

  • Hesselberth JR, Robertson MP, Knudsen SM, Ellington AD (2003) Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal Biochem 312:106–112

    Article  CAS  PubMed  Google Scholar 

  • Howard K (2003) Unlocking the money-making potential of RNAi. Nat Biotechnol 21:1441–1446

    CAS  PubMed  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  PubMed  Google Scholar 

  • Huppi K, Martin SE, Caplen NJ (2005) Defining and assaying RNAi in mammalian cells. Mol Cell 17:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056–2060

    Article  CAS  PubMed  Google Scholar 

  • Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847

    Article  CAS  PubMed  Google Scholar 

  • Iyo M, Kawasaki H, Taira K (2002) Construction of an allosteric trans-maxizyme targeting for two distinct oncogenes. Nucleic Acids Res Suppl 115–116

    Google Scholar 

  • Iyo M, Kawasaki H, Taira K (2004) Maxizyme technology. Methods Mol Biol 252:257–265

    CAS  PubMed  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  • Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  • Jose AM, Soukup GA, Breaker RR (2001) Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Res 29:1631–1637

    Article  CAS  PubMed  Google Scholar 

  • Joshi P, Prasad VR (2002) Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). J Virol 76:6545–6557

    Article  CAS  PubMed  Google Scholar 

  • Kaern M, Blake WJ, Collins JJ (2003) The engineering of gene regulatory networks. Annu Rev Biomed Eng 5:179–206

    Article  CAS  PubMed  Google Scholar 

  • Karberg M, Guo H, Zhong J, Coon R, Perutka J, Lambowitz AM (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nat Biotechnol 19:1162–1167

    Article  CAS  PubMed  Google Scholar 

  • Kertsburg A, Soukup GA (2002) A versatile communication module for controlling RNA folding and catalysis. Nucleic Acids Res 30:4599–4606

    Article  CAS  PubMed  Google Scholar 

  • Khan AU, Lal SK (2003) Ribozymes: a modern tool in medicine. J Biomed Sci 10:457–467

    CAS  PubMed  Google Scholar 

  • Koizumi M, Soukup GA, Kerr JN, Breaker RR (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat Struct Biol 6:1062–1071

    CAS  PubMed  Google Scholar 

  • Komatsu Y, Yamashita S, Kazama N, Nobuoka K, Ohtsuka E (2000) Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor. J Mol Biol 299:1231–1243

    Article  CAS  PubMed  Google Scholar 

  • Kore AR, Vaish NK, Kutzke U, Eckstein F (1998) Sequence specificity of the hammerhead ribozyme revisited; the NHH rule. Nucleic Acids Res 26:4116–4120

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara T, Warashina M, Tanabe T, Tani K, Asano S, Taira K (1998) A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol Cell 2:617–627

    Article  CAS  PubMed  Google Scholar 

  • Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35

    Article  CAS  PubMed  Google Scholar 

  • Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY, Tsai MJ, O’Malley BW (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27

    Article  CAS  PubMed  Google Scholar 

  • Lanz RB, Razani B, Goldberg AD, O’Malley BW (2002) Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci U S A 99:16081–16086

    Article  CAS  PubMed  Google Scholar 

  • Lazarev D, Puskarz I, Breaker RR (2003) Substrate specificity and reaction kinetics of an X-motif ribozyme. RNA 9:688–697

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Date SV, Adai AT, Marcotte EM (2004) A probabilistic functional network of yeast genes. Science 306:1555–1558

    CAS  PubMed  Google Scholar 

  • Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82

    Article  CAS  PubMed  Google Scholar 

  • Mackie GA, Genereaux JL (1993) The role of RNA structure in determining RNase E-dependent cleavage sites in the mRNA for ribosomal protein S20 in vitro. J Mol Biol 234:998–1012

    Article  CAS  PubMed  Google Scholar 

  • Mandal M, Breaker RR (2004a) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35

    Article  CAS  PubMed  Google Scholar 

  • Mandal M, Breaker RR (2004b) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    Article  CAS  PubMed  Google Scholar 

  • Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586

    Article  CAS  PubMed  Google Scholar 

  • Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR (2004) Aglycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279

    Article  CAS  PubMed  Google Scholar 

  • Mansfield SG, Chao H, Walsh CE (2004) RNA repair using spliceosome-mediated RNA trans-splicing. Trends Mol Med 10:263–268

    Article  CAS  PubMed  Google Scholar 

  • Marshall KA, Ellington AD (2000) In vitro selection of RNA aptamers. Methods Enzymol 318:193–214

    CAS  PubMed  Google Scholar 

  • Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99:4620–4625

    Article  CAS  PubMed  Google Scholar 

  • Masse E, Majdalani N, Gottesman S (2003) Regulatory roles for small RNAs in bacteria. Curr Opin Microbiol 6:120–124

    CAS  PubMed  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  CAS  PubMed  Google Scholar 

  • McDowall KJ, Lin-Chao S, Cohen SN (1994) A+Ucontent rather than a particular nucleotide order determines the specificity of RNase E cleavage. J Biol Chem 269:10790–10796

    CAS  PubMed  Google Scholar 

  • Michienzi A, Castanotto D, Lee N, Li S, Zaia JA, Rossi JJ (2003) RNA-mediated inhibition of HIV in a gene therapy setting. Ann N Y Acad Sci 1002:63–71

    Article  CAS  PubMed  Google Scholar 

  • Mikulecky PJ, Kaw MK, Brescia CC, Takach JC, Sledjeski DD, Feig AL (2004) Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat Struct Mol Biol 11:1206–1214

    Article  CAS  PubMed  Google Scholar 

  • Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U (2003) Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA 9:1308–1314

    Article  CAS  PubMed  Google Scholar 

  • Moore PB, Steitz TA (2003) The structural basis of large ribosomal subunit function. Annu Rev Biochem 72:813–850

    Article  CAS  PubMed  Google Scholar 

  • Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583

    Article  CAS  PubMed  Google Scholar 

  • Opdyke JA, Kang JG, Storz G (2004) GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186:6698–6705

    Article  CAS  PubMed  Google Scholar 

  • Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O’shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannon GJ (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431

    Article  CAS  PubMed  Google Scholar 

  • Pan WH, Xin P, Bui V, Clawson GA (2003) Rapid identification of efficient target cleavage sites using a hammerhead ribozyme library in an iterative manner. Mol Ther 7:129–139

    Article  CAS  PubMed  Google Scholar 

  • Parker JS, Roe SM, Barford D (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434:663–666

    Article  CAS  PubMed  Google Scholar 

  • Perutka J, Wang W, Goerlitz D, Lambowitz AM (2004) Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol 336:421–439

    Article  CAS  PubMed  Google Scholar 

  • Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372:68–74

    CAS  PubMed  Google Scholar 

  • Pollack JR, Iyer VR (2002) Characterizing the physical genome. Nat Genet 32Suppl 515–521

    CAS  PubMed  Google Scholar 

  • Puerta-Fernandez E, Romero-Lopez C, Barroso-delJesus A, Berzal-Herranz A (2003) Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 27:75–97

    CAS  PubMed  Google Scholar 

  • Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33:349–355

    Article  CAS  PubMed  Google Scholar 

  • Raser JM, O’shea EK (2004) Control of stochasticity in eukaryotic gene expression. Science 304:1811–1814

    Article  CAS  PubMed  Google Scholar 

  • Rivas E, Klein RJ, Jones TA, Eddy SR (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Curr Biol 11:1369–1373

    Article  CAS  PubMed  Google Scholar 

  • Robertson MP, Ellington AD (1999) In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat Biotechnol 17:62–66

    CAS  PubMed  Google Scholar 

  • Robertson MP, Ellington AD (2000) Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res 28:1751–1759

    CAS  PubMed  Google Scholar 

  • Robertson MP, Knudsen SM, Ellington AD (2004) In vitro selection of ribozymes dependent on peptides for activity. RNA 10:114–127

    Article  CAS  PubMed  Google Scholar 

  • Roth A, Breaker RR (2004) Selection in vitro of allosteric ribozymes. Methods Mol Biol 252:145–164

    CAS  PubMed  Google Scholar 

  • Rupert PB, Ferre-D’Amare AR (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410:780–786

    Article  CAS  PubMed  Google Scholar 

  • Rusconi CP, Scardino E, Layzer J, Pitoc GA, Ortel TL, Monroe D, Sullenger BA (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94

    Article  CAS  PubMed  Google Scholar 

  • Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94:4262–4266

    CAS  PubMed  Google Scholar 

  • Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A (1996) Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382:713–716

    Article  CAS  PubMed  Google Scholar 

  • Silva JM, Mizuno H, Brady A, Lucito R, Hannon GJ (2004) RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. Proc Natl Acad Sci U S A 101:6548–6552

    Article  CAS  PubMed  Google Scholar 

  • Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434:462–469

    CAS  PubMed  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6:127–138

    Article  CAS  PubMed  Google Scholar 

  • Soukup GA, Breaker RR (2000) Allosteric nucleic acid catalysts. Curr Opin Struct Biol 10:318–325

    Article  CAS  PubMed  Google Scholar 

  • Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418

    Article  CAS  PubMed  Google Scholar 

  • Stojanovic MN, Stefanovic D (2003) A deoxyribozyme-based molecular automaton. Nat Biotechnol 21:1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Storz, Wassarman KM (2004) An abundance of RNA regulators. Annu Rev Biochem 74:199–217

    Google Scholar 

  • Storz G, Opdyke JA, Zhang A (2004) Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7:140–144

    Article  CAS  PubMed  Google Scholar 

  • Sudarsan N, Barrick JE, Breaker RR (2003)Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647

    Article  CAS  PubMed  Google Scholar 

  • Sullenger BA, Gilboa E (2002) Emerging clinical applications of RNA. Nature 418:252–258

    Article  CAS  PubMed  Google Scholar 

  • Suyama E, Kawasaki H, Wadhwa R, Taira K (2004a) Cell migration and metastasis as targets of small RNA-based molecular genetic analyses. J Muscle Res Cell Motil 25:303–308

    Article  CAS  PubMed  Google Scholar 

  • Suyama E, Wadhwa R, Kaur K, Miyagishi M, Kaul SC, Kawasaki H, Taira K (2004b) Identification of metastasis-related genes in a mouse model using a library of randomized ribozymes. J Biol Chem 279:38083–38086

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Zamore PD (2004) Biochemical dissection of RNA silencing in plants. Methods Mol Biol 257:223–244

    CAS  PubMed  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Breaker RR (1997) Rational design of allosteric ribozymes. Chem Biol 4:453–459

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Breaker RR (2000) Structural diversity of self-cleaving ribozymes. Proc Natl Acad Sci U S A 97:5784–5789

    CAS  PubMed  Google Scholar 

  • Thompson KM, Syrett HA, Knudsen SM, Ellington AD (2002) Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2:21

    Article  PubMed  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19:517–529

    Article  CAS  PubMed  Google Scholar 

  • Vaish NK, Dong F, Andrews L, Schweppe RE, Ahn NG, Blatt L, Seiwert SD (2002) Monitoring post-translational modification of proteins with allosteric ribozymes. Nat Biotechnol 20:810–815

    CAS  PubMed  Google Scholar 

  • Vaish NK, Kossen K, Andrews LE, Pasko C, Seiwert SD (2004) Monitoring protein modification with allosteric ribozymes. Methods 32:428–436

    Article  CAS  PubMed  Google Scholar 

  • Vytvytska O, Moll I, Kaberdin VR, von Gabain A, Blasi U (2000) Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev 14:1109–1118

    CAS  PubMed  Google Scholar 

  • Wadhwa R, Yaguchi T, Kaur K, Suyama E, Kawasaki H, Taira K, Kaul SC (2004) Use of a randomized hybrid ribozyme library for identification of genes involved in muscle differentiation. J Biol Chem 279:51622–51629

    Article  CAS  PubMed  Google Scholar 

  • Wassarman KM, Storz G (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–623

    Article  CAS  PubMed  Google Scholar 

  • Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651

    Article  CAS  PubMed  Google Scholar 

  • Wilderman PJ, Sowa NA, FitzGerald DJ, FitzGerald PC, Gottesman S, Ochsner UA, Vasil ML (2004) Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc Natl Acad Sci U S A 101:9792–9797

    Article  CAS  PubMed  Google Scholar 

  • Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  CAS  PubMed  Google Scholar 

  • Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 99:15908–15913

    CAS  PubMed  Google Scholar 

  • Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    Article  CAS  PubMed  Google Scholar 

  • Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  • Yen L, Svendsen J, Lee JS, Gray JT, Magnier M, Baba T, D’Amato RJ, Mulligan RC (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431:471–476

    Article  CAS  PubMed  Google Scholar 

  • Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Natl Acad Sci U S A 99:16587–16591

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Narayanaswamy, R., Ellington, A. (2006). Engineering RNA-Based Circuits. In: Erdmann, V., Barciszewski, J., Brosius, J. (eds) RNA Towards Medicine. Handbook of Experimental Pharmacology, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27262-3_22

Download citation

Publish with us

Policies and ethics