Skip to main content

Aptamer-Based Biosensors: Biomedical Applications

  • Chapter
RNA Towards Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 173))

Abstract

This chapter considers the use of aptamer-based biosensors (generally termed ‘aptasensors’) in various biomedical applications. A comparison of antibodies and aptamers is made with respect to their use in the development of biosensors. A brief introduction to biosensor design and theory is provided to illustrate the principles of the field. Various transduction approaches, viz. optical, fluorescence, acoustic wave and electrochemical, are discussed. Specific biomedical applications described include RNA folding, high-throughput screening of drugs, use as receptors for measuring biological concentrations, detection of platelet-derived growth factor, protein binding and detection of HIV-1 Tat protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, McDevitt JT (2003) DNA hybridization and discrimination of single-nucleotide mismatches using chipbased microbead arrays. Anal Chem 75:4732–4739

    Article  CAS  PubMed  Google Scholar 

  • Anderson MLM (1999) Nucleic acid hybridization. Bios Publishers, Oxford, pp 209–210

    Google Scholar 

  • AptaRes (2005) MonoLex information Web page: http://www.aptares.de/html/technology.html. Cited 2 July 2005

    Google Scholar 

  • Archemix Corporation (2003) Company’s home Web page: http://www.archemix.com. Cited 2 July 2005

    Google Scholar 

  • Bruno JG, Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electro-chemiluminescent detection. Biosens Bioelectron 14:457–464

    Article  CAS  PubMed  Google Scholar 

  • caesar Foundation (2005) Aptamer Biosensors Web page: http://www.caesar.de/568.0.html. Cited 2 July 2005

    Google Scholar 

  • Cattrall RW (1997) Chemical sensors. Oxford University Press, Oxford, pp 1–8

    Google Scholar 

  • Cunningham AJ (1998) Introduction to bioanalytical sensors. Wiley, New York, pp 1–18

    Google Scholar 

  • Deisingh AK, Thompson M (2002) Detection of toxigenic and infectious bacteria. Analyst 127:567–581

    Article  CAS  PubMed  Google Scholar 

  • Famulok M (2005) Rheinische Friedrich-Wilhelms-Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Michael Famulok workgroup homepage, http://famulok.chemie.uni-bonn.de/. Cited 13 July 2005

    Google Scholar 

  • Famulok M, Mayer G (1999) Aptamers as tools in molecular biology and immunology. In: Famulok M, Wong C-H, Winnacker E-L (eds) Combinatorial chemistry in biology. Current topics in microbiology and immunology. Springer-Verlag, Berlin, Heidelberg, New York, pp 123–136

    Google Scholar 

  • Fang X, Cao Z, Beck T, Tan W (2001) Molecular aptamer for real-time oncoprotein platelet-derived growth factor monitoring by fluorescence anisotropy. Anal Chem 73:5752–5757

    CAS  PubMed  Google Scholar 

  • Gebhart K, Shokraei A, Babaie E, Linquist B (2000) RNA aptamers to S-adenosylhomocysteine: kinetic properties, divalent cation dependency and comparison with anti-Sadenosylhomocysteine antibody. Biochemistry 39:7255–7265

    Google Scholar 

  • Guthold M (2005) Novel, single-molecule aptamer selection method [abstract]. NCI Office of Technology and Industrial Relations: http://otir.nci.nih.gov/abstracts/imat_guthold1102.html. Cited 2 July 2005

    Google Scholar 

  • Hall EAH (1990) Biosensors. Open University Press, Milton Keynes, pp 1–45

    Google Scholar 

  • Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131

    Article  CAS  PubMed  Google Scholar 

  • Ho H-A, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1387

    CAS  PubMed  Google Scholar 

  • Jhaveri S, Rajendran M, Ellington AD (2000) In vitro selection of signaling aptamers. Nat Biotechnol 18:1293–1297

    CAS  PubMed  Google Scholar 

  • Kirby R, Cho E J, Gehrke B, Bayer T, Park YS, Neikirk DP, McDevitt JT, Ellington AD (2004) Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 76:4066–4075

    Article  CAS  PubMed  Google Scholar 

  • Kleinjung F, Klussmann S, Erdmann VA, Scheller FW, Furste JP, Bier FF (1998) High-affinity RNA as a recognition element in a biosensor. Anal Chem 70:328–331

    Article  CAS  Google Scholar 

  • Liu J, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76:1627–1632

    CAS  PubMed  Google Scholar 

  • Liss M, Petersen B, Prohaska E, Wolf H (2004) Preparation of optimized high affinity receptors for a biochip designed to simultaneously analyze expression products. German Human Genome Project: http://www.dhgp.de/research/projects/abstracts/pdf/9949.pdf. Cited 2 July 2005

    Google Scholar 

  • Luzi E, Minunni M, Tombelli S, Mascini M (2003) New trends in affinity sensing: aptamers for ligand binding. Trends Anal Chem 22:810–818

    Article  CAS  Google Scholar 

  • McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem 319:244–250

    Article  CAS  PubMed  Google Scholar 

  • Merino EJ, Weeks KM (2003) Fluorogenic resolution of ligand binding by a nucleic acid aptamer. J Am Chem Soc 125:12370–12371

    CAS  PubMed  Google Scholar 

  • Mir M, Katakis I (2004) Electrochemical aptasensors [abstract]. Second International Workshop on Multianalyte Biosensing Devices, 18–20 February 2004. http://www.etseq.urv.es/dinamic/congres/novel/poster8.htm. Cited 2 July 2005

    Google Scholar 

  • Nutui R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778

    Google Scholar 

  • O’sullivan CK (2002) Aptasensors—the future of biosensing? Anal Bioanal Chem 372:44–48

    CAS  PubMed  Google Scholar 

  • Okumoto Y, Ohmichi T, Sugimoto N (2002) Immobilized small deoxyribozyme to distinguish RNA secondary structures. Biochemistry 41:2769–2773

    Article  CAS  PubMed  Google Scholar 

  • Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM (1998) Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal Chem 70:3419–3425

    CAS  PubMed  Google Scholar 

  • Rajendran M, Ellington AD (2003) In vitro selection of molecular beacons. Nucleic Acids Res 31:5700–5713

    Article  CAS  PubMed  Google Scholar 

  • Savran CA, Sparks AW, Sihler J, Li J, Wu W-C, Berlin DE, Burg TP, Fritz J, Schmidt MA, Manalis SR (2002) Fabrication and characterization of a micromechanical sensor for differential detection of nanoscale motions. J Microelectromech Syst 11:703–708

    Article  CAS  Google Scholar 

  • Savran CA, Burg TP, Fritz J, Manalis SR (2003) Microfabricated mechanical biosensor with inherently differential readout. Appl Phys Lett 83:1659–1661

    Article  CAS  Google Scholar 

  • Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Micromechanical detection of proteins using aptamer-based receptor molecules. Anal Chem 76:3194–3198

    Article  CAS  PubMed  Google Scholar 

  • Savran CA (2005) Personal Web site, Purdue University, Mechanical Engineering Department: http://widget.ecn.purdue.edu/~savran. Cited 2 July 2005

    Google Scholar 

  • Spiridonova VA, Kopylov AM (2002) DNA aptamers as radically new recognition elements for biosensors. Biochemistry (Mosc) 67:706–709

    CAS  Google Scholar 

  • Tombelli S, Mascini M (2005) Aptamer biosensors as DNA/RNA-based tools for proteomics. Web page: http://www.montefiore.ulg.ac.be/services/microelec/materials_dna2004/tombelli.pdf. Cited 13 July 2005

    Google Scholar 

  • Tombelli S, Minunni M, Gullotto A, Luzi E, Mascini M (2004) Aptamers for HIV-1 Tat protein. Eighth World Congress on Biosensors, 24–26 May 2004 [abstract]. http://www.sparksdesigns.co.uk/biopapers04/papers/bs420.pdf. Cited 2 July 2005

    Google Scholar 

  • Turner APF, Newman JD (1998) An introduction to biosensors. In: Scott AO (ed) Biosensors for food analysis. Royal Society of Chemistry, Cambridge, pp 1–20

    Google Scholar 

  • Yamamoto R, Kumar PKR (2000) Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 5:389–396

    CAS  PubMed  Google Scholar 

  • Yamana K, Ohtani Y, Nakano H, Saito I (2003) Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor. Bioorg Med Chem Lett 13:3429–3431

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deisingh, A. (2006). Aptamer-Based Biosensors: Biomedical Applications. In: Erdmann, V., Barciszewski, J., Brosius, J. (eds) RNA Towards Medicine. Handbook of Experimental Pharmacology, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27262-3_17

Download citation

Publish with us

Policies and ethics