Skip to main content

Biological Effects of Microbubble-Based Ultrasound Contrast Agents

  • Chapter
Contrast Media in Ultrasonography

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AIUM (American Institute of Ultrasound in Medicine) (2000) Mechanical bioeffects from diagnostic ultrasound: AIUM consensus statements. J Ultrasound Med 19:120–142

    Google Scholar 

  • Birnbaum Y, Luo H, Nagai T et al (1998) Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries with transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 97:130–134

    PubMed  Google Scholar 

  • Borges AC, Walde T, Reibis RK et al (2002) Does contrast echocardiography with Optison induce myocardial necrosis in humans? J Am Soc Echocardiogr 15:1080–1086

    Article  PubMed  Google Scholar 

  • Carstensen EL, Gracewski S, Dalecki D (2000) The search for cavitation in vivo. Ultrasound Med Biol 26:1377–1385

    Article  PubMed  Google Scholar 

  • Culp WC, Porter TR, Xie F et al (2001) Microbubble potentiated ultrasound as a method of declotting thrombosed dialysis grafts: experimental study in dogs. Cardiov Intervent Radiol 24:407–412

    Article  Google Scholar 

  • Dalecki D, Keller BB, Carstensen EL et al (1991) Thresholds for premature ventricular contractions in frog hearts exposed to lithotripter fields. Ultrasound Med Biol 17:341–346

    PubMed  Google Scholar 

  • Dalecki D, Keller BB, Raeman CH, Carstensen EL (1993a) Effects of pulsed ultrasound on the frog heart. I. Thresholds for changes in cardiac rhythm and aortic pressure. Ultrasound Med Biol 19:385–390

    Article  PubMed  Google Scholar 

  • Dalecki D, Raeman CH, Carstensen EL (1993b) Effects of pulsed ultrasound on the frog heart. II. An investigation of heating as a potential mechanism. Ultrasound Med Biol 19:391–398

    Article  PubMed  Google Scholar 

  • Dalecki D, Raeman CH, Child SZ, Carstensen EL (1995) Intestinal hemorrhage from exposure to pulsed ultrasound. Ultrasound Med Biol 21:1067–1072

    Article  PubMed  Google Scholar 

  • Dalecki D, Raeman CH, Child SZ, Carstensen EL (1996) A test for cavitation as a mechanism for intestinal hemorrhage in mice exposed to a piezoelectric lithotripter. Ultrasound Med Biol 22:493–496

    Article  PubMed  Google Scholar 

  • Dalecki D, Raeman CH, Child SZ et al (1997a) Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol 23: 307–313

    Article  PubMed  Google Scholar 

  • Dalecki D, Raeman CH, Child SZ, Carstensen EL (1997b) Effects of pulsed ultrasound on the frog heart. III. The radiation force mechanism. Ultrasound Med Biol 23:275–285

    Article  PubMed  Google Scholar 

  • Dalecki D, Raeman CH, Child SZ et al (1997c) The influence of contrast agents on hemorrhage produced by lithotripter fields. Ultrasound Med Biol 23:1435–1439

    Article  PubMed  Google Scholar 

  • Dalecki D, Raeman CH, Child SZ et al (1997d) Remnants of Albunex nucleate acoustic cavitation. Ultrasound Med Biol 23:1405–1412

    Article  PubMed  Google Scholar 

  • Dalecki D, Child SZ, Raeman CH et al (2000) Bioeffects of positive and negative acoustic pressures in mice infused with microbubbles. Ultrasound Med Biol 26:1327–1332

    Article  PubMed  Google Scholar 

  • Delius M, Enders F, Xuan ZR et al (1988) Biological effects of shock waves: kidney damage by shock waves in dogs — dose dependence. Ultrasound Med Biol 14:117–122

    Article  PubMed  Google Scholar 

  • Delius M, Jordan M, Liebich HG, Brendel W (1990) Biological effects of shock waves: effect of shock waves on the liver and gallbladder wall of dogs-administration rate dependence. Ultrasound Med Biol 16:459–466

    Article  PubMed  Google Scholar 

  • Delius M, Hoffman G, Steinbeck G, Conzen P (1994) Biological effects of shock waves: induction of arrhythmia in piglet hearts. Ultrasound Med Biol 20:279–285

    Article  PubMed  Google Scholar 

  • Greenleaf WF, Golander ME, Sarkar G et al (1998) Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 24:587–595

    Article  PubMed  Google Scholar 

  • Hartman C, Child SZ, Mayer R et al (1990) Lung damage from exposure to the fields of an electrohydraulic lithotripter. Ultrasound Med Biol 16:675–679

    Article  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646

    PubMed  Google Scholar 

  • Killam AL, Greener Y, McFerran BA et al (1998) Lack of bioeffects of ultrasound energy after intravenous administration of FS069 (Optison) in the anesthetized rabbit. J Ultrasound Med 17:349–356

    PubMed  Google Scholar 

  • Klibanov AL (1999) Targeted delivery of gas-filled microsphere, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 37:139–157

    Article  PubMed  Google Scholar 

  • Leighton TG (1994) The acoustic bubble. Academic, London

    Google Scholar 

  • Li P, Cao L-Q, Dou C-Y et al (2003) Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, pressure amplitude and contrast dose. Ultrasound Med Biol 29:1341–1349

    Article  PubMed  Google Scholar 

  • Li P, Armstrong WF, Miller D (2004) Impact of myocardial contrast echocardiography on vascular permeability: comparison of three different contrast agents. Ultrasound Med Biol 30:83–91

    Article  PubMed  Google Scholar 

  • MacRobbie AG, Raeman CH, Child SZ, Dalecki D (1997) Thresholds for premature contractions in murine hearts exposed to pulsed ultrasound. Ultrasound Med Biol 23:761–765

    Article  PubMed  Google Scholar 

  • Miller DL, Gies RA (1998) Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine. Ultrasound Med Biol 24:1201–1208

    Article  PubMed  Google Scholar 

  • Miller DL, Gies RA (1999) Consequences of lithotripter shockwave interaction with gas body contrast agent in mouse intestine. J Urol 162:606–609

    Article  PubMed  Google Scholar 

  • Miller DL, Gies RA (2000) The influence of ultrasound frequency and gas-body composition on the contrast agent-mediated enhancement of vascular bioeffect in mouse intestine. Ultrasound Med Biol 26:307–313

    Article  PubMed  Google Scholar 

  • Miller DL, Quddus J (2000) Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc Natl Acad Sci USA 97:10179–10184

    Article  PubMed  Google Scholar 

  • Miller DL, Song J (2002) Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfection in vivo. Ultrasound Med Biol 28:1343–1348

    Article  PubMed  Google Scholar 

  • National Council on Radiation Protection and Measurements (NCRP) (2002) Exposure Criteria for Medical Diagnostic Ultrasound. II. Criteria based on all known mechanisms. NCRP, Besthesda, MD

    Google Scholar 

  • Raeman CH, Child SZ, Meltzer RS, Carstensen EL (1997) Albunex® does not increase the sensitivity of the lung to pulsed ultrasound. Echocardiography 14:553–557

    PubMed  Google Scholar 

  • Raisinghani A, Wei KS, Crouse L et al (2003) Myocardial contrast echocardiography (MCE) with triggered ultrasound does not cause premature ventricular complexes: evidence from PB127 MCE studies. J Am Soc Echocardiogr 16:1037–1042

    Article  PubMed  Google Scholar 

  • Schlachetzki F, Holscher T, Koch HJ, Draganski B, May A, Schuierer G, Bogdahn U (2002) Observation on the integrity of the blood-brain barrier after microbubble destruction by diagnostic transcranial color-coded sonography. J Ultrasound Med 21:419–429

    PubMed  Google Scholar 

  • Simon RH, Ho SY, Lange SC et al (1993) Applications of lipidcoated microbubble contrast to tumor therapy. Ultrasound Med Biol 19:123–125

    Article  PubMed  Google Scholar 

  • Skyba DM, Price RJ, Linka AZ et al (1998) Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissues. Circulation 98:290–293

    PubMed  Google Scholar 

  • Song J, Qi M, Kaul S, Price RJ (2002) Stimulation of arteriogenesis in skeletal muscle by microbubble destruction with ultrasound. Circulation 106:1550–1555

    Article  PubMed  Google Scholar 

  • Unger EC, Hersh E, Vannan M et al (2001a) Local drug delivery through microbubbles. Prog Cardio Dis 44:45–54

    Article  Google Scholar 

  • Unger EC, Hersh E, Vannan M, McCreery T (2001b) Gene delivery using ultrasound contrast agents. Echocardiography 18:355–361

    Article  PubMed  Google Scholar 

  • Van der Wouw PA, Brauns AC, Bailey SE et al (2000) Premature ventricular contractions during triggered imaging with ultrasound contrast. J Am Soc Echocardio 13:288–294

    Article  Google Scholar 

  • Wible JH, Galen KP, Wojdyla JK et al (2002) Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats. Ultrasound Med Biol 28:1535–1546

    Article  PubMed  Google Scholar 

  • Young F (1989) Cavitation. McGraw-Hill, New York

    Google Scholar 

  • Zachary JF, Hartleben S, Frizzell LA, O'Brien WD (2002) Arrhythmias in rat hearts exposed to pulsed ultrasound after intravenous injection of a contrast agent. J Ultrasound Med 21:1347–1356

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dalecki, D. (2005). Biological Effects of Microbubble-Based Ultrasound Contrast Agents. In: Quaia, E. (eds) Contrast Media in Ultrasonography. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27214-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-27214-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40740-9

  • Online ISBN: 978-3-540-27214-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics