30 Years of FCT: Status and Directions

  • Rainald Löhner
  • Joseph D. Baum
Part of the Scientific Computation book series (SCIENTCOMP)


A somewhat historical perspective of the use of FCT for fluid dynamics is given. The particular emphasis is on large-scale blast problems. A comparison with other high-resolution CFD solvers is included to highlight the differences between them, as well as the relative cost. Results from test runs, as well as several relevant production runs are shown. Outstanding issues that deserve further investigation are identified.


Shock Tube Riemann Problem Unstructured Grid Contact Discontinuity High Order Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baum, J.D. and R. Löhner-Numerical Simulation of Shock Interaction with a Modern Main Battlefield Tank; AIAA-91-1666 (1991).Google Scholar
  2. 2.
    Baum, J.D., H. Luo and R. Löhner-Numerical Simulation of a Blast Inside a Boeing 747; AIAA-93-3091 (1993).Google Scholar
  3. 3.
    Baum, J.D. and R. Löhner-Numerical Simulation of Shock-Box Interaction Using an Adaptive Finite Element Scheme; AIAA J. 32,4, 682–692 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    Baum,.D., H. Luo and R. Löhner-Numerical Simulation of Blast in the World Trade Center; AIAA-95-0085 (1995).Google Scholar
  5. 5.
    Baum, J.D., H. Luo and R. Löhner-Validation of a New ALE, Adaptive Unstructured Moving Body Methodology for Multi-Store Ejection Simulations; AIAA-95-1792 (1995).Google Scholar
  6. 6.
    Baum, J.D., H. Luo, R. Löhner, C. Yang, D. Pelessone and C. Charman-A Coupled Fluid/Structure Modeling of Shock Interaction with a Truck; AIAA-96-0795 (1996).Google Scholar
  7. 7.
    Billey, V., J. Périaux, P. Perrier, B. Stoufflet-2-D and 3-D Euler Computations with Finite Element Methods in Aerodynamic; International Conference on Hypersonic Problems, Saint-Etienne, Jan. 13–17 (1986).Google Scholar
  8. 8.
    Book, D.L., J.P. Boris and K. Hain-Flux-corrected Transport. II. Generalizations of the Method; J. Comp. Phys. 18, 248–283 (1975).CrossRefADSGoogle Scholar
  9. 9.
    Boris, J.P. and D.L. Book-Flux-corrected Transport. I. SHASTA, a Transport Algorithm that works; J. Comp. Phys. 11, 38–69 (1973).CrossRefADSGoogle Scholar
  10. 10.
    Boris, J.P. and D.L. Book-Flux-corrected Transport. III. Minimal-Error FCT Algorithms; J. Comp. Phys. 20, 397–431 (1976).CrossRefADSGoogle Scholar
  11. 11.
    Colella, P.-Multidimensional Upwind Methods for Hyperbolic Conservation Laws; LBL-17023, Preprint (1983).Google Scholar
  12. 12.
    deFainchtein, R, S.T. Zalesak, R. Löhner and D.S. Spicer-Finite Element Simulation of a Turbulent MHD System: Comparison to a Pseudo-Spectral Simulation; Comp. Phys. Comm. 86, 25–39 (1995).CrossRefADSGoogle Scholar
  13. 13.
    Fry, M.A. and D.L. Book-Adaptation of Flux-Corrected Transport Codes for Modelling Dusty Flows; Proc. 14th Int. Symp. on Shock Tubes and Waves (R.D. Archer and B.E. Milton eds.), New South Wales University Press (1983).Google Scholar
  14. 14.
    Fyfe, D.E., J.H. Gardner, M. Picone and M.A. Fry-Fast Three-Dimensional Flux-Corrected Transport Code for Highly Resolved Compressible Flow Calculations; Springer Lecture Notes in Physics 218, 230–234, Springer Verlag (1985).ADSCrossRefGoogle Scholar
  15. 15.
    Godunov, S.K.-Finite Difference Method for Numerical Computation of Discontinuous Solutions of the Equations of Fluid Dynamics; Mat. Sb. 47, 271–306 (1959).zbMATHMathSciNetGoogle Scholar
  16. 16.
    Goodman, J.B. and R.J. LeVeque-On the Accuracy of Stable Schemes for 2D Scalar Conservation Laws; Math. Comp. 45, 15–21 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Harten, A., and G. Zwaas-Self-Adjusting Hybrid Schemes for Shock Computations; J. Comp. Phys. 6, 568–583 (1972).CrossRefADSGoogle Scholar
  18. 18.
    Harten, A.-High Resolution Schemes for Hyperbolic Conservation Laws; J. Comp. Phys. 49, 357–393 (1983).CrossRefADSzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hirsch, C.-Numerical Computation of Internal and External Flow; J. Wiley & Sons (1991).Google Scholar
  20. 20.
    Jameson, A., W. Schmidt and E. Turkel-Numerical Solution of the Euler Equations by Finite Volume Methods using Runge-Kutta Time-Stepping Schemes; AIAA-81-1259 (1981).Google Scholar
  21. 21.
    Kuzmin, D.-Positive Finite Element Schemes Based on the Flux-Corrected Transport Procedure; pp. 887–888 in Computational Fluid and Solid Mechanics, Elsevier (2001).Google Scholar
  22. 22.
    Kuzmin, D. and S. Turek-Explicit and Implicit High-Resolution Finite Element Schemes Based on the Flux-Corrected-Transport Algorithm; pp. 133–143 in Proc. 4th European Conf. Num. Math. and Advanced Appl. ( F. Brezzi et al. eds.), Springer-Verlag, (2002)Google Scholar
  23. 23.
    Kuzmin, D. and S. Turek-Flux Correction Tools for Finite Elements; J. Comp. Phys. 175, 525–558 (2002).CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Kuzmin, D., M. Möller and S. Turek-Multidimensional FEM-FCT Schemes for Arbitrary Time-Stepping; Int. J. Numer. Meth. Fluids 42, 265–295 (2003).CrossRefzbMATHGoogle Scholar
  25. 25.
    van Leer, B.-Towards the Ultimate Conservative Scheme. II. Monotonicity and Conservation Combined in a Second Order Scheme; J. Comp. Phys. 14, 361–370 (1974).CrossRefADSzbMATHGoogle Scholar
  26. 26.
    Löhner, R., K. Morgan and J. Peraire-A Simple Extension to Multidimensional Problems of the Artificial Viscosity due to Lapidus; Comm. Appl. Num. Meth. 1, 141–147 (1985).CrossRefzbMATHGoogle Scholar
  27. 27.
    Löhner, R., K. Morgan, J. Peraire and M. Vahdati-Finite Element Flux-Corrected Transport (FEM-FCT) for the Euler and Navier-Stokes Equations; Int. J. Num. Meth. Fluids 7, 1093–1109 (1987).CrossRefzbMATHGoogle Scholar
  28. 28.
    Löhner, R., K. Morgan, M. Vahdati, J.P. Boris and D.L. Book-FEM-FCT: Combining Unstructured Grids with High Resolution; Comm. Appl. Num. Meth. 4, 717–730 (1988).CrossRefzbMATHGoogle Scholar
  29. 29.
    Löhner, R and J.D. Baum-Adaptive H-Refinement on 3-D Unstructured Grids for Transient Problems; Int. J. Num. Meth. Fluids 14, 1407–1419 (1992).CrossRefzbMATHGoogle Scholar
  30. 30.
    Löhner, R., Chi Yang, J.D. Baum, H. Luo, D. Pelessone and C. Charman-The Numerical Simulation of Strongly Unsteady Flows With Hundreds of Moving Bodies; Int. J. Num. Meth. Fluids 31, 113–120 (1999).CrossRefzbMATHGoogle Scholar
  31. 31.
    Löhner, R.-Applied CFD Techniques; J. Wiley & Sons (2001).Google Scholar
  32. 32.
    Löhner, R., J.D. Baum, E.L. Mestreau, D. Sharov, Ch. Charman and D. Pelessone-Adaptive Embedded Unstructured Grid Methods; AIAA-03-1116 (2003).Google Scholar
  33. 33.
    Luo, H., J.D. Baum, R. Löhner and J. Cabello-Adaptive Edge-Based Finite Element Schemes for the Euler and Navier-Stokes Equations; AIAA-93-0336 (1993).Google Scholar
  34. 34.
    Luo, H., J.D. Baum and R. Löhner-Edge-Based Finite Element Scheme for the Euler Equations; AIAA J. 32,6, 1183–1190 (1994).ADSCrossRefzbMATHGoogle Scholar
  35. 35.
    Mavriplis, D.-Three-Dimensional Unstructured Multigrid for the Euler Equations; AIAA-91-1549-CP (1991).Google Scholar
  36. 36.
    Mestreau, E., R. Löhner and S. Aita-TGV Tunnel-Entry Simulations Using a Finite Element Code with Automatic Remeshing; AIAA-93-0890 (1993).Google Scholar
  37. 37.
    Osher, S. and F. Solomon-Upwind Difference Schemes for Hyperbolic Systems of Conservation Laws; Math. Comp. 38, 339–374 (1982).CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Parrott, A.K. and M.A. Christie-FCT Applied to the 2-D Finite Element Solution of Tracer Transport by Single Phase Flow in a Porous Medium; Proc. ICFD-Conf. Num. Meth. in Fluid Dyn. (K.W. Morton and Baines eds.), Reading, Academic Press (1986).Google Scholar
  39. 39.
    Patnaik, G., R.H. Guirguis, J.P. Boris and E.S. Oran-A Barely Implicit Correction for Flux-Corrected Transport; J. Comp. Phys. (1988).Google Scholar
  40. 40.
    Patnaik, G., K. Kailasanath, K.J. Laskey and E.S. Oran-Detailed Numerical Simulations of Cellular Flames; Proc. 22nd Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, (1989).Google Scholar
  41. 41.
    Peraire, J., J. Peiro and K. Morgan-A Three-Dimensional Finite Element Multigrid Solver for the Euler Equations; AIAA-92-0449 (1992).Google Scholar
  42. 42.
    Rice, D.L., M.E. Giltrud, J.D. Baum, H. Luo and E. Mestreau-Experimental and Numerical Investigation of Shock Diffraction About Blast Walls; Proc. 16th Int. Symp. Military Aspects of Blast and Shocks, Keble College, Oxford, UK, September 10–15 (2000).Google Scholar
  43. 43.
    Riemann, G.F.B.-Über die Fortpflanzung ebener Luftwellen von Endlicher Schwingungweite; Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 8 (1860).Google Scholar
  44. 44.
    Roe, P.L.-Approximate Riemann Solvers, Parameter Vectors and Difference Schemes; J. Comp. Phys. 43, 357–372 (1981).CrossRefADSzbMATHMathSciNetGoogle Scholar
  45. 45.
    Sivier, S., E. Loth, J.D. Baum and R. Löhner-Vorticity Produced by Shock Wave Diffraction; Shock Waves 2, 31–41 (1992).CrossRefADSGoogle Scholar
  46. 46.
    Scannapieco, A.J. and S. L. Ossakow-Nonlinear Equatorial Spread F; Geophys. Res. Lett. 3,451 (1976).Google Scholar
  47. 47.
    Sod, G.-A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws; J. Comp. Phys. 27, 1–31 (1978).CrossRefADSzbMATHMathSciNetGoogle Scholar
  48. 48.
    Sweby, P.K.-High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws; SIAM J. Num. Anal. 21, 995–1011 (1984).CrossRefzbMATHMathSciNetADSGoogle Scholar
  49. 49.
    Weatherill, N.P., O. Hassan, M.J. Marchant and D.L. Marcum-Adaptive Inviscid Flow Solutions for Aerospace Geometries on Efficiently Generated Unstructured Tetrahedral Meshes; AIAA-93-3390 (1993).Google Scholar
  50. 50.
    Whitaker, D.L., B. Grossman and R. Löhner-Two-Dimensional Euler Computations on a Triangular Mesh Using an Upwind, Finite-Volume Scheme; AIAA-89-0365 (1989).Google Scholar
  51. 51.
    Woodward, P. and P. Colella-The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks; J. Comp. Phys. 54, 115–173 (1984).CrossRefADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    Zalesak, S.T.-Fully Multidimensional Flux-Corrected Transport Algorithm for Fluids; J. Comp. Phys. 31, 335–362 (1979).CrossRefADSzbMATHMathSciNetGoogle Scholar
  53. 53.
    Zalesak, S.T. and R. Löhner-Minimizing Numerical Dissipation in Modern Shock Capturing Schemes; pp. 1205–1211 in Proc. 7th Int. Conf. Finite Elements in Flow Problems (T.J. Chung and G. Karr eds.), Huntsville, AL (1989).Google Scholar
  54. 54.
    Zhmakin, A.I. and A.A. Fursenko-A Class of Monotonic Shock-Capturing Difference Schemes; NRL Memo. Rep. 4567, (1981).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Rainald Löhner
    • 1
  • Joseph D. Baum
    • 2
  1. 1.School of Computational Sciences, MS 4C7George Mason UniversityFairfaxUSA
  2. 2.Advanced Technology Group SAICMcLeanUSA

Personalised recommendations