Skip to main content

Biological Clock in the Liver

  • Chapter
  • 1216 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akashi M, Nishida E. Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Develop 2000;14:645–649.

    PubMed  Google Scholar 

  2. Akashi M, Tsuchiya Y, Yoshino T, Nishida E. Control of intracellular dynamics of mammalian period proteins by casein kinase I epsilon (CKIepsilon) and CKIdelta in cultured cells. Mol Cell Biol 2002;22:1693–1703.

    Article  PubMed  Google Scholar 

  3. Akhtar A, Reddy AB, Maywood ES et al. Cycling of the mouse livertranscriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 2000;12:540–550.

    Article  Google Scholar 

  4. Allison MR. Regulation of hepatic growth. Physiol Rev 1986;66:499–541.

    PubMed  Google Scholar 

  5. Bae K, Jin XW, Maywood ES et al. Differential functions of mPeri, mPer2, and mPer3 in the SCN circadian clock. Neuron 2001:30:525–536.

    Article  PubMed  Google Scholar 

  6. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998:93:929–937.

    Article  PubMed  Google Scholar 

  7. Balsalobre A, Brown SSA, Marcacci L et al. Resetting of circadian time in peripheral tissues by glucocorticoid signalling. Science 2000;289:2344–2347.

    Article  PubMed  Google Scholar 

  8. Bjarnason GA, Jordan R. Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog Cell Cycle Res 2000;4:193–206.

    PubMed  Google Scholar 

  9. Buijs RM, Wortel J, Heerikhuize JJ van et al. Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 1999:11:1535–1544.

    Article  PubMed  Google Scholar 

  10. Buchi KN, Moore JG, Hrushesky WJ et al. Circadian rhythm of cellular proliferation in the human rectal mucosa. Gastroenterology 1991:101:410–415.

    PubMed  Google Scholar 

  11. Bunger MK, Wilsbacher LD, Moran SM et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000;103:1009–1017.

    Article  PubMed  Google Scholar 

  12. Burgess HJ, Trinder JR, Kim Y, Luke D. Sleepand circadian influences on cardiac autonomic nervous system activity. Am J Physiol 1997;273:H1761–H1768.

    PubMed  Google Scholar 

  13. Burns ER, Scheving LE. Circadian influenceon the waveform of the frequency of labeled mitoses in mouse corneal epithelium. Cell Tissue Kinet 1975;8:61–66.

    PubMed  Google Scholar 

  14. Bucher NLR, Swaffield MN. The rate of incorporation of labeled thymidine into the deoxyribonucleic acid of regenerating rat liver in relation to the amount of liver excised. Cancer Res 1964;24:1611–1625.

    PubMed  Google Scholar 

  15. Cardone L, Sassone-Corsi P. Timing the cell cycle. Nature Cell Biol 2003:5:859–861.

    Article  PubMed  Google Scholar 

  16. Daan S, Pittendrigh CS. A functional analysis of circadian pacemakers in nocturnal rodents: II. The variability of phase responsecurve. J Comp Physiol 1976;106:253–266.

    Article  Google Scholar 

  17. Damiola F, Minh N, Prenitner N et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Develop 2000;14:2950–2961.

    Article  PubMed  Google Scholar 

  18. Diehl AM, Rai RM. Regulation of signal transduction during liverregeneration. FASEB J 1996;10:215–227.

    PubMed  Google Scholar 

  19. Dunlap JC. Molecular bases for circadian clocks. Cell 1999:96:271–290.

    Article  PubMed  Google Scholar 

  20. Emery P, Noveral JM, Jamison CF, Siwicki KK. Rhythms of Drosophila period geneexpression in culture. Proc Natl Acad Sci USA 1997:94:4092–4096.

    Article  PubMed  Google Scholar 

  21. Fu L, Pelicano H, Liu J et al. Thecircadian gene Period 2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002;111:41–50.

    Article  PubMed  Google Scholar 

  22. Gekakis N, Staknis D, Nguyen HB et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998:280:1564–1569.

    Article  PubMed  Google Scholar 

  23. Hara R, Wan K, Wakamatsu H et al. Restricted feeding entrains circadian clock in the mouse liver without participation of suprachiasmatic nucleus. Genes Cells 2001;6:269–278.

    Article  PubMed  Google Scholar 

  24. Higgins GM, Anderson RM. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 1931;12:186–202.

    Google Scholar 

  25. Ishida Y, Yokoyama C, Inatomi T et al. Circadian rhythm of aromatic L-amino acid decarboxylase in the rat suprachiasmatic nucleus: gene expression and decarboxylasing activity in clock oscillating cells. Genes Cells 2002;7:447–459.

    PubMed  Google Scholar 

  26. Jin X, Shearman LP, Weaver DR et al. A molecular mechanism regulating rhythmic output from the suprachiasmatic nucleus. Cell 1999;96:57–68.

    Article  PubMed  Google Scholar 

  27. Kellendonk C, Opherk C, Anlag K et al. Hepatocyte-specific expression of Cre recombinase. Genesis 2000;26:151–153.

    Article  PubMed  Google Scholar 

  28. Klein DC, Moore RY, Reppert SM. Suprachiasmatic nucleus: the mind’s clock. New York: Oxford University Press, 1991.

    Google Scholar 

  29. Kornmann B, Preitner N, Rifat D et al. Analysis of circadian liver gene expression by ADDER, a highly sensitive method forthedisplay of differentially expressed mRNAs. Nucl Acids Res 2001;29:E51.

    Article  PubMed  Google Scholar 

  30. Lavery DL, Lopez-Molina L, Margueron R et al. Circadian expression of the steroid 15-hydroxylase (Cyp2 4) and coumarin 7-hydroxylase (Cyp2 5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol Cell Biol 1999;19:6488–6499.

    PubMed  Google Scholar 

  31. Lee C, Etchegaray JP, Cagampang FRA et al. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001;107:855–867.

    Article  PubMed  Google Scholar 

  32. Lowrey PL, Shimomura K, Antoch MP et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000;288:483–492.

    Article  PubMed  Google Scholar 

  33. Matsuo T, Yamaguchi S, Mitsui S et al. Control mechanism of the circadian clock for timing of cell division. Science 2003;302:255–259.

    Article  PubMed  Google Scholar 

  34. Michalopoulos GK, DeFrances MC. Liver regeneration. Science1997;276:60–66.

    Article  PubMed  Google Scholar 

  35. Mitsui S, Yamaguchi S, Matsuo T et al. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Develop 2001;15:995–1006.

    Article  PubMed  Google Scholar 

  36. Mooten FL, Bucher NLR. Regeneration of rat liver: transfer of humoral agents by cross circulation. Science 1967;158:272–273.

    PubMed  Google Scholar 

  37. Niijima A, Nagai K, Nagai N, Akagawa H. Effects of light stimulation on the activity of the autonomic nerves in anesthetized rats. Physiol Behav 1993;54:555–561.

    Article  PubMed  Google Scholar 

  38. Okamura H, Miyake S, Sumi Y et al. Photic induction of mPeri and mPer2 in cry deficient mice lacking a biological clock. Science 1999;286:2531–2534.

    Article  PubMed  Google Scholar 

  39. Panda S, Antoch MP, Miller BH et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 2002;109:307–320.

    Article  PubMed  Google Scholar 

  40. Pittendrigh CS, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: pacemaker as clock. J Comp Physiol 1976;106:291–331.

    Article  Google Scholar 

  41. Preitner N, Damiola F, Lopez-Molina L et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002;110:251–260.

    Article  PubMed  Google Scholar 

  42. Rosenfeld P, Van Eekelen JAM, Levine S, de Kloet ER. Ontogeny of corticosteroid receptors in the brain cell. Mol Neurobiol 1993;13:295–319.

    Article  Google Scholar 

  43. Sakamoto K, Nagase T, Fukui H et al. Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J Biol Chem 1998;273:27039–27042.

    Article  PubMed  Google Scholar 

  44. Scheving LE, Tsai TH, Scheving LA. Chronobiology of the intestinal tract of the mouse. Am J Anat 1983;168:433–465.

    Article  PubMed  Google Scholar 

  45. Scheer FA, Horst GJ ter, Vliet J van der, Buijs RM. Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am J Physiol 2001;280:H1391–H1399.

    Google Scholar 

  46. Shigeyoshi Y, Meyer-Bernstein E, Yagita K et al. Restoration of circadian behavioral rhythms in a period null Drosophila mutant (per01) by mammalian period homologues mPeri and mPer2. Genes Cells 2002;7:163–171.

    Article  PubMed  Google Scholar 

  47. Smaaland R. Circadian rhythm of cell division. Prog Cell Cyde Res 1996;2:241–266.

    Google Scholar 

  48. Stanewsky R, Kaneko M, Emery P et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 1998;95:681–692.

    Article  PubMed  Google Scholar 

  49. Silver R, LeSauter J, Tresco PA, Lehman MN. A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 1996;382:810–813.

    Article  PubMed  Google Scholar 

  50. Takumi T, Matsubara C, Shigeyoshi Y et al. A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells 1998;3:167–176.

    Article  PubMed  Google Scholar 

  51. Takumi T, Taguchi K, Miyake S et al. A light independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J 1998;17:4753–4759.

    Article  PubMed  Google Scholar 

  52. Terazono H, Mutoh T, Yamaguchi S et al. Adrenergic regulation of clock gene expression in the mouse liver. Proc Natl Acad Sci USA 2003;100:6795–6800.

    Article  PubMed  Google Scholar 

  53. Tronche F, Kellendonk C, Reichardt HM, Schutz G. Genetic dissection of glucocorticoid receptor function in mice. Curr Opin Genet Dev 1998;8:532–538.

    Article  PubMed  Google Scholar 

  54. Vielhaber E, Eide E, Rivers A et al. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol 2000;20:4888–4899.

    Article  PubMed  Google Scholar 

  55. Watanabe N, Broome M, Hunter T. Regulation of the human WEE1 Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J 1995;14:1878–1891.

    PubMed  Google Scholar 

  56. Whitmore D, Foulkes NS, Strähle U, Sassone-Corsi P. Zebrafish clock rhythmic expression reveals independent peripheral circadian oscillators. Nature Neurosci 1998;1:701–707.

    Article  PubMed  Google Scholar 

  57. Whitmore D, Foulkes NS, Sassone-Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 2000;404:87–91.

    Article  PubMed  Google Scholar 

  58. Yagita K, Okamura H. Forskolin induces circadian gene expression of rPeri, rPer2 and dbp in mammalian rat-1 fibroblasts. FEBS Lett 2000;465:79–82.

    Article  PubMed  Google Scholar 

  59. Yagita K, Tamanini F, Horst G van der, Okamura H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 2001;292:278–281.

    Article  PubMed  Google Scholar 

  60. Yagita K, Tamanini F, Yasuda M et al. Nucleocytoplasmic shuttling and mCRY dependent inhibition of ubiquitination of the mPER2 dockprotein. EMBO J 2002;21:1301–1314.

    Article  PubMed  Google Scholar 

  61. Yamaguchi S, Isejima H, Matsuo T et al. Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 2003;302:1408–1412.

    Article  PubMed  Google Scholar 

  62. Yamazaki S, Numano R, Abe M et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000;288:682–685.

    Article  PubMed  Google Scholar 

  63. Zheng B, Albrecht U, Kaasik K et al. Nonredundant roles of the mPeri and mPer2 genes in the mammalian circadian clock. Cel I 2001;105:683–694.

    Google Scholar 

  64. Zylka MJ, Shearman LP, Weaver DR, Reppert SM. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron1998;20:1103–1110.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okamura, H. (2005). Biological Clock in the Liver. In: Dufour, JF., Clavien, PA., Trautwein, C., Graf, R. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27194-5_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-27194-5_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22934-6

  • Online ISBN: 978-3-540-27194-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics