Skip to main content

Partly Convex and Convex-Monotonic Optimization Problems

  • Conference paper

Summary

A class of nonconvex optimization problems is studied that exhibits partial convexity combined with partial monotonicity. To exploit this particular hybrid structure a natural approach is to use a branch and bound scheme with branching performed on the nonconvex variables and bounds computed by lagrangian or convex relaxation. We discuss conditions that guarantee convergence of such branch and bound algorithms. Incidentally, several incorrect results in the recent literature on related subjects are reviewed.

Key words

  • Nonconvex optimization
  • hybrid convex-monotonic optimization
  • partly convex programming
  • branch and bound method
  • lagrangian relaxation
  • dual bound
  • consistent bound

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-27170-8_37
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-27170-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ben-Tal et al.:'Global minimization by reducing the duality gap'. Math. Prog. 63(1994) 193–212.

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. M. Dür: ‘Dual bounding procedures lead to convergent branch-and-bound algorithms', Math. Program. Ser A 91(2001) 117–2001.

    MATH  MathSciNet  Google Scholar 

  3. I. Ekeland and R. Temam: Convex Analysis and Variational Problems. North Holland, Amsterdam, 1976.

    MATH  Google Scholar 

  4. J. Falk: ‘Lagrange multipliers and nonconvex programs’ SIAM J. Control 7(1969), 534–545.

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. O. Fujiwara and D.B. Khang: ‘A two-phase decomposition method for optimal design of looped water distribution networks’ Water Resources Research 23(1990) 977–982.

    CrossRef  Google Scholar 

  6. C. Floudas and A. Aggarwal: ‘A decomposition strategy for global optimum search in the pooling problem', ORSA Journal on Computing, 2(3), 1990.

    Google Scholar 

  7. Ng.T. Hoai Phuong and H. Tuy: ‘A unified monotonic approach to generalized linear fractional programming', Journal of Global Optimization, 2002, to appear.

    Google Scholar 

  8. R. Horst and H. Tuy: Global Optimization — deterministic approaches, 3rd edition, Springer 1996.

    Google Scholar 

  9. A. Rubinov, Abstract Convexity and Global Optimization, Kluwer 2000.

    Google Scholar 

  10. H.D. Sherali and E.P. Smith: ‘A global optimization approach to a water distribution network problem ‘Journal of Global Optimization 11(1997), 107–132.

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. N.Z. Shor and S.I. Stetsenko: Quadratic extremal problems and nondifferentiable optimization, Naukova Dumka, Kiev, 1989 (Russian)

    Google Scholar 

  12. N. V. Thoai: ‘Duality Bound Method for the General Quadratic Programming Problem with Quadratic Constraints', Journal of Optimization Theory and Applications 107 (2000), 331–354.

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. N.V. Thoai: ‘On duality bound method in partly convex programming', Journal of Global Optimization 22(2002), 263–270.

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. N.V. Thoai:'Convergence and Applications of a Decomposition Method Using Duality Bounds for Nonconvex Global Optimization’ Journal of Optimization Theory and Applications 113(2002), 165–193.

    Google Scholar 

  15. H.D. Tuan, P. Apkarian and Y. Nakashima: ‘A new Lagrangian dual global optimization algorithm for solving bilinear matrix inequalities', Int. J. Robust Nonlinear Control, (2000); 10: 561–578.

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. H. Tuy: ‘On Nonconvex Optimization Problems with Separated Nonconvex Variables', Journal of Global Optimization, 2(1992), 133–144.

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. H. Tuy: Convex Analysis and Global Optimization, Kluwer 1998.

    Google Scholar 

  18. H. Tuy: ‘Normal Sets, Polyblocks, and Monotonic Optimization’ Vietnam Journal of Mathematics, Springer Verlag, 27:4(1999), 277–300.

    MATH  MathSciNet  Google Scholar 

  19. H. Tuy: ‘Monotonic optimization: Problems and solution approaches', SIAM Journal on Optimization, 11(2000), 464–494.

    CrossRef  MATH  MathSciNet  Google Scholar 

  20. H. Tuy: ‘Counter-Examples to Some Results on D.C. Optimization', Preprint, Institute of Mathematics, Hanoi, Vietnam, 2002. Submitted.

    Google Scholar 

  21. H. Tuy: ‘A New General Minimax Theorem', Preprint, Institute of Mathematics, Hanoi, Vietnam, 2003. Submitted.

    Google Scholar 

  22. H. Tuy and L.T. Luc, ‘A new approach to optimization under monotonic constraint', Journal of Global Optimization, 18(2000), 1–15.

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tuy, H. (2005). Partly Convex and Convex-Monotonic Optimization Problems. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_37

Download citation