Skip to main content

Solenoidal Discrete Initialization for Magnetohydrodynamics

  • Conference paper

Summary

We propose a procedure to initialize the magnetic flux, possibly discontinuous, on a finite volume grid in an exactly solenoidal way. That is, a certain discrete divergence operator will vanish on each cell. Combined with a new locally divergence preserving numerical scheme we are able to conduct MHD simulations which have an exactly vanishing discrete divergence. In this paper we describe the new scheme and the initialization procedure and present the results of a simulation of a shock interaction with a magnetized cloud.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balsara, D. S. and Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comp. Phys. 149, (1999) p.270

    Article  MathSciNet  Google Scholar 

  2. Brackhill, J. U. and Barnes, D. C., The effect of nonzero Δ · B on the numerical solution of the magnetohydrodynamic equations, J. Comp. Phys. 35, (1980) p.426

    Article  Google Scholar 

  3. Dai, W. and Woodward, P. R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows, Astrophys. J. 494, (1998) p.317

    Article  Google Scholar 

  4. Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., and Wesenberg, M., Hyperbolic Divergence Cleaning for the MHD Equations, J. Comp. Phys. 175(2), (2002) p.645

    Article  Google Scholar 

  5. DeSterck, H., Multi-Dimensional Upwind Constrained Transport on Unstructured Grids for Shallow Water Magnetohydrodynamics, AIAA Paper 2001–2623, (2001)

    Google Scholar 

  6. Evans, C. R. and Hawley, J. F., Simulation of Magnetohydrodynamic Flows: A Constrained Transport Method, Astrophys. J. 332, (1988) p.659

    Article  Google Scholar 

  7. Godlewski, E. and Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer, New York (1996)

    Google Scholar 

  8. Jeffrey, A. and Taniuti, T., Non-linear Wave Propagation, Academy Press, New York (1964)

    Google Scholar 

  9. Jiang, G.-S. and Shu, C.-W., Efficient Implementation of weighted ENO schemes, J. Comp. Phys. 126, (1996) p.202

    Article  MathSciNet  Google Scholar 

  10. Munz, C.-D., Omnes, P., Schneider, R., Sonnendrücker, E., and Voss, U., Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model, J. Comp. Phys. 161(2), (2000), p.484

    Article  Google Scholar 

  11. Powell, K. G., An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), ICASE Report No. 94-24, (1994)

    Google Scholar 

  12. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. DeZeeuw, A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comp. Phys. 154/2 (1999) p.284

    Article  MathSciNet  Google Scholar 

  13. Torrilhon, M. and Fey, M., Multidimensional Upwind Methods for Advection Equations with Constraints, submitted to SIAM J. Num. Anal., (2003)

    Google Scholar 

  14. Torrilhon, M., Locally Divergence-preserving Upwind Schemes for Magnetohydrodynamic Equations, submitted to SIAM J. Sci. Comp., (2003)

    Google Scholar 

  15. Toth, G., The Δ · B Constraint in Shock-Capturing Magnetohydrodynamics Codes, J. Comp. Phys. 161, (2000)

    Google Scholar 

  16. M. Wesenberg, Efficient MHD Riemann Solvers for Simulations on Unstructured Triangular Grids, East West J. Numer. Math. in press (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jeltsch, R., Torrilhon, M. (2005). Solenoidal Discrete Initialization for Magnetohydrodynamics. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_19

Download citation

Publish with us

Policies and ethics