Skip to main content

Summary

The operative planning problem in natural gas distribution networks is addressed. An optimization model focusing on the governing PDE and other nonlinear aspects is presented together with a suitable discretization for transient optimization in large networks by SQP methods. Computational results for a range of related dynamic test problems demonstrate the viability of the approach.

This work has been supported by the Federal Ministry of Education and Science (BMBF) under grant 03STM5B4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. A. Boyd, L. R. Scott, and S. Wu, Evaluating the quality of pipeline optimization algorithms, in 29th Annual Meeting, Pipeline Simulation Interest Group, 1997. Paper 9709.

    Google Scholar 

  2. R. G. Carter, Pipeline optimization: Dynamic Programming after 30 years, in 30th Annual Meeting, Pipeline Simulation Interest Group, 1998. Paper 9803.

    Google Scholar 

  3. E. M. Gertz, P. E. Gill, and J. Muethering, Users guide for SnadiOpt: a package adding automatic differentiation to SNOPT, Technical Memorandum ANL/MCS-TM-245, Argonne National Labs, Jan. 2001.

    Google Scholar 

  4. P. E. Gill, W. Murray, and M. S. Saunders, SNOPT: An SQP algorithm for large-scale constrained optimization, SIAM J. Optim., 12 (2002), pp. 979–1006.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Gugat, G. Leugering, K. Schittkowski, and E. J. P. G. Schmidt, Modelling, stabilization, and control of flow in networks of open channels, in Online Optimization of Large Scale Systems, M. Grötschel, S. O. Krumke, and J. Rambau, eds., Springer, Berlin, 2001, pp. 251–270.

    Google Scholar 

  6. P. Hackländer, Integrierte Betriebsplanung von Gasversorgungssystemen, Verlag Mainz, Wissenschaftsverlag, Aachen, 2002.

    Google Scholar 

  7. T. Heidenreich, Linearisierung in transienten Optimierungsmodellen des Gastransports, Universität Duisburg, 2002.

    Google Scholar 

  8. J. Krälik, P. Stiegler, Z. Vostry, and J. Zavorka, A universal dynamic simulation model of gas pipeline networks, IEEE Trans. Syst., Man, Cybern., SMC-14 (1984), pp. 597–606.

    Google Scholar 

  9. A. Martin and M. Möller, Cutting planes for the optimization of gas networks, Preprint 2253, Fachbereich Mathematik, Technische Universität Darmstadt, 2002.

    Google Scholar 

  10. K. F. Pratt and J. G. Wilson, Optimization of the operation of gas transmission systems, Transactions of the Institute of Measurement and Control, 6 (1984), pp. 261–269.

    Article  Google Scholar 

  11. D. Rist, Dynamik realer Gase, Springer, Berlin, 1996.

    Google Scholar 

  12. E. Sekirnjak, Mixed integer optimization for gas transmission and distribution systems. Vortragsmanuskript, INFORMS-Meeting, Seattle, Oct. 1998.

    Google Scholar 

  13. Z. Vostrý, Transient optimization of gas transport and distribution, in Proceedings of 2nd International Workshop SIMONE on Innovative Approaches to Modeling and Optimal Control of Large Scale Pipeline Networks, Prague, 1993, pp. 53–62.

    Google Scholar 

  14. J. F. Wilkinson, D. V. Holliday, E. H. Batey, and K. W. Hannah, Transient Flow in Natural Gas Transmission Systems, American Gas Association, 1964.

    Google Scholar 

  15. D. D. Wolf and Y. Smeers, The gas transmission problem solved by an extension of the simplex algorithm, Management Sci., 46 (2000), pp. 1454–1465.

    Article  Google Scholar 

  16. P. J. Wong and R. E. Larson, Optimization of tree-structured natural-gas transmission networks, J. Math. Anal. Appl., 24 (1968), pp. 613–626.

    Article  MathSciNet  Google Scholar 

  17. S. Wright, M. Somani, and C. Ditzel, Compressor station optimization, in 30th Annual Meeting, Pipeline Simulation Interest Group, 1998. Paper 9805.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ehrhardt, K., Steinbach, M.C. (2005). Nonlinear Optimization in Gas Networks. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_11

Download citation

Publish with us

Policies and ethics