Advertisement

Singularities of Some Projective Rational Surfaces

  • Ragni Piene
Conference paper

Abstract

We discuss the singularities of some rational algebraic surfaces in complex projective space. In particular, we give formulas for the degrees of the various types of singular loci, in terms of invariants of the surface. These enumerative results can be used, on the one hand, to show the existence of singularities in the complex case, and, on the other hand, as an “upper bound” for the singularities that can occur on a real rational surface.

Keywords

Triple Point General Projection Singular Locus Pinch Point Geometric Genus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apéry, F.; Models of the real projective plane. Computer graphics of Steiner and Boy surfaces. With a preface by Egbert Brieskorn. Friedr. Vieweg & Sohn, Braunschweig, 1987.Google Scholar
  2. 2.
    Arnold, V. I., Gorynov, V. V., Lyashko, O. V., Vasil’ev, V. A.: Singularity Theory, Springer 1998.Google Scholar
  3. 3.
    Beauville, A.: Surfaces algébriques complexes. Astérisque 54 (1978).Google Scholar
  4. 4.
    Bruce, J. W., Wall, C. T. C.; On the classification of cubic surfaces. J. London Math. Soc. 2,(19) (1979), 245–256.MathSciNetGoogle Scholar
  5. 5.
    Cayley, A.: A memoir on cubic surfaces. Phil. Trans. Roy. Soc. London Ser. A 159 (1869), 231–326.zbMATHGoogle Scholar
  6. 6.
    Coffman, A.; Schwartz, A. J.; Stanton, C.: The algebra and geometry of Steiner and other quadratically parametrizable surfaces. Comput. Aided Geom. Design 13 (1996), no. 3, 257–286.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Klein, F.: Über Flächen dritter Ordnung. Math. Ann. 6 (1873), 551–581.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Pérez-Díaz, S., Sendra, J., Sendra, J. R.: Parametrizations of approximate algebraic surfaces by lines. Submitted.Google Scholar
  9. 9.
    Piene, R.: Some formulas for a surface in ℙ3. In Algebraic Geometry (Proc. Sympos., Tromsoe, Norway 1977), ed. L. Olson, LNM 687, Springer-Verlag, 1978, 196–235.Google Scholar
  10. 10.
    Piene, R.: On higher order dual varieties, with an application to scrolls. Proc. Symp. Pure Math. 40 (Part 2), AMS 1983, 335–342.zbMATHMathSciNetGoogle Scholar
  11. 11.
    Piene, R., Sacchiero, G.: Duality for rational normal scrolls. Comm. Algebra 12(9-10) (1984) 1041–1066.MathSciNetGoogle Scholar
  12. 12.
    Schicho, J.: Elementary theory of Del Pezzo surfaces, these proceedings.Google Scholar
  13. 13.
    Schläfli, L.: On the distribution of surfaces of the third order into species, in reference to the absence or presence of singular points, and the reality of their lines. Phil. Trans. Roy. Soc. London Ser. A 153 (1863), 195–241 = L. Schläfli, Ges. Math. Abh., Birkhäuser 1953, Vol. II.Google Scholar
  14. 14.
    Sederberg, T., Zheng, J., Klimaszewski, K., Dokken, T.: Approximate implicitization using monoid curves and surfaces. Graphical Models and Image Processing 61 (1999), 177–198.CrossRefGoogle Scholar
  15. 15.
    Segre, B.: The nonsingular cubic surface. Oxford University Press, 1942.Google Scholar
  16. 16.
    Segre, C.: itude des différentes surfaces du 4e ordre à conique double ou cuspidale (générale ou décomposé) considérées comme des projections de l’intersection de deux variétées quadratiques de l’espace à quatre dimensions. Math. Ann. 24 (1884), 313–442.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Semple, J. G., Roth, L.: Introduction to algebraic geometry. Oxford University Press, 1949.Google Scholar
  18. 18.
    Singular (Greuel, G.-M., Pfister, G., Schönemann, H.): A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.deGoogle Scholar
  19. 19.
    Zeuthen, H. G.: itudes des propriétés de situation des surfaces cubiques. Math. Ann. 8 (1875), 1–30zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ragni Piene
    • 1
  1. 1.Centre of Mathematics for Applications & Department of MathematicsUniversity of OsloOsloNorway

Personalised recommendations