Skip to main content

Part of the book series: Springer Praxis Books ((GEOPHYS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.8 References

  • Abramowitz, M. and Stegun, I.A. (eds) (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1046 pp.). US Department of Commerce, National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Asmar, B.N., Langston, P.A., and Ergenzinger, P. (2003) The potential of the discrete element method to simulate debris flow. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics Prediction and Assessment (Vol. 1, pp. 435–445). Millpress, Rotterdam.

    Google Scholar 

  • Bagnold, R.A. (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, Proceedings of the Royal Society of London, Ser. A, 225, 49–63.

    Google Scholar 

  • Bear, J. (1972) Dynamics of Fluids in Porous Media (764 pp.). Dover, New York.

    Google Scholar 

  • Bird, R.B., Stewart, W.E., and Lightfoot, E.N. (1960) Transport Phenomena (780 pp.). John Wiley & Sons, New York.

    Google Scholar 

  • Brown, R.L. and Richards, J.C. (1970) Principles of Powder Mechanics (221 pp.). Pergamon Press, Oxford, UK.

    Google Scholar 

  • Campbell, C.S., Cleary, P.W., and Hopkins, M.A. (1995) Large-scale landslide simulations: Global deformation, velocities and basal friction. Journal of Geophysical Research B, 100, 8267–8283.

    Article  Google Scholar 

  • Chen, C-L. (1988) Generalized viscoplastic modeling of debris flow. Journal of Hydraulic Engineering, 114, 237–258.

    Google Scholar 

  • Chen, C-L. (ed.) (1997) Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (817 pp.). American Society of Civil Engineers, New York.

    Google Scholar 

  • Coulomb, C.A. (1776) Sur une application des régles de maxima & minima à quelques problèmes de statique, rélatifs à l'architecture. In: Mémoires de Mathématique et de Physique, Presented at the Royal Academy of Sciences, 1773 (pp. 343–384). Imp. R. Acad. Sci., Paris.

    Google Scholar 

  • Coussot, P. and Piau, J-M. (1995) A large-scale field coaxial cylinder rheometer for the study of the rheology of natural coarse suspensions. Journal of Rheology, 39, 105–124.

    Article  Google Scholar 

  • Davies, T.R.H. (1990) Debris-flow surges: Experimental simulation. Journal of Hydrology (N.Z.), 29, 18–46.

    Google Scholar 

  • Denlinger, R.P. and Iverson, R.M. (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. Journal of Geophysical Research B, 106, 553–566.

    Article  Google Scholar 

  • Denlinger, R.P. and Iverson, R.M. (2004) Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. Journal of Geophysical Research F, 109, doi:10.1029/2003JF000085, 14 pp.

    Google Scholar 

  • Desai, C.S. and Siriwardane, H.J. (1984) Constitutive Laws for Engineering Materials, with Emphasis on Geologic Materials (468 pp.). Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Drew, D.A. and Lahey, R.T. (1993) Analytical modeling of multiphase flow. In: M.C. Roco (ed.), Particulate Two-Phase Flow (pp. 509–566). Butterworth-Heinemann, Boston.

    Google Scholar 

  • Erlichson, H. (1991) A mass-change model for the estimation of debris-flow runout, a second discussion: Conditions for the application of the rocket equation. Journal of Geology, 99, 633–634.

    Google Scholar 

  • Forterre, Y. and Pouliquen, 0. (2003) Long-surface-wave instability in dense granular flows. Journal of Fluid Mechanics, 486, 21–50.

    Article  Google Scholar 

  • Gidaspow, D. (1994) Multiphase Flow and Fluidization (467 pp.). Academic Press, Boston.

    Google Scholar 

  • Goldhirsh, I. (2003) Rapid granular flows. Annual Review of Fluid Mechanics, 35, 267–293.

    Article  Google Scholar 

  • Gray, J.M.N.T., Wieland, M., and Hutter, K. (1999) Gravity driven free surface flow of granular avalanches over complex basal topography Proceedings of the Royal Society of London, Ser. A, 455, 1841–1874.

    Article  Google Scholar 

  • Haff, P.K. (1983) Grain flow as a fluid-mechanical phenomenon. Journal of Fluid Mechanics, 134, 401–430.

    Article  Google Scholar 

  • Hungr, 0. (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32, 610–623.

    Google Scholar 

  • Hungr, 0. (2000) Analysis of debris flow surges using the theory of uniformly progressive flow, Earth Surface Processes and Landforms 25, 483–495.

    Article  Google Scholar 

  • Hungr, 0. and Morgenstern, N.R. (1984) Experiments on the flow behaviour of granular materials at high velocity in an open channel. Géotechnique, 34, 405–413.

    Article  Google Scholar 

  • Hunt, M.L., Zenit, R., Campbell, C.S., and Brennen, C.E. (2002) Revisiting the 1954 suspension experiments of R.A. Bagnold. Journal of Fluid Mechanics, 452, 1–24.

    Article  Google Scholar 

  • Iverson, R.M. (1985) A constitutive equation for mass-movement behavior. Journal of Geology, 93, 143–160.

    Article  Google Scholar 

  • Iverson, R.M. (1997) The physics of debris flows. Reviews of Geophysics, 35, 245–296.

    Article  Google Scholar 

  • Iverson, R.M. (2003a) The debris-flow rheology myth. In: D. Rickenmann and C.L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (Vol. 1, pp. 303–314). Millpress, Rotterdam.

    Google Scholar 

  • Iverson, R.M. (2003b) How should mathematical models of geomorphic processes be judged? In: P.R. Wilcock and R.M. Iverson (eds), Prediction in Geomorphology (Geophysical Monograph 135, pp. 83–94). American Geophysical Union, Washington, DC.

    Google Scholar 

  • Iverson, R.M. (2003c) Gravity-driven mass flows. In: G.V. Middleton (ed.), Encyclopedia of Sediments and Sedimentary Rocks (pp. 347–353). Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Iverson, R.M. and Denlinger, R.P. (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. Journal of Geophysical Research B, 106, 537–552.

    Article  Google Scholar 

  • Iverson, R.M. and Vallance, J.W. (2001) New views of granular mass flows. Geology, 29, 115–118.

    Article  Google Scholar 

  • Iverson, R.M., Reid, M.E., and LaHusen, R.G. (1997) Debris-flow mobilization from land-slides. Annual Review of Earth and Planetary Sciences, 25, 85–138.

    Article  Google Scholar 

  • Iverson, R.M., Reid, M.E., Iverson, N.R., LaHusen, R.G., Logan, M., Mann, J.E., and Brien, D.L. (2000) Acute sensitivity of landslide rates to initial soil porosity. Science, 290, 513–516.

    Article  Google Scholar 

  • Iverson, R.M., Logan, M., and Denlinger, R.P. (2004) Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. Journal of Geophysical Research F, 109, doi:10.1029/2003JF000084, 16 pp.

    Google Scholar 

  • Kang, Z. and Zhang, S. (1980) A preliminary analysis of the characteristics of debris flow. Proceedings of the International Symposium on River Sedimentation (pp. 225–226). Chinese Society for Hydraulic Engineering, Beijing.

    Google Scholar 

  • Keller, J.B. (2003) Shallow-water theory for arbitrary slopes of the bottom. Journal of Fluid Mechanics, 489, 345–348.

    Article  Google Scholar 

  • Koch, D.L. and Hill, R.J. (2001) Inertial effects in suspension and porous-media flows. Annual Review of Fluid Mechanics, 33, 619–647.

    Article  Google Scholar 

  • Lambe, T.W. and Whitman, R.V. (1979) Soil Mechanics, SI Version (553 pp.). John Wiley & Sons, New York.

    Google Scholar 

  • Locat, J. (1997) Normalized theological behavior of fine muds and their properties in a pseudoplastic regime. In: C-L. Chen (ed.), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (pp. 260–269). American Society of Civil Engineers, New York.

    Google Scholar 

  • Major, J.J. and Iverson, R.M. (1999) Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins. Geological Society of America Bulletin, 111, 1424–1434.

    Article  Google Scholar 

  • Major, J.J. and Pierson, T.C. (1992) Debris-flow rheology: Experimental analysis of fine-grained slurries. Water Resources Research, 28, 841–857.

    Article  Google Scholar 

  • Major, J.J., Iverson, R.M., McTigue, D.F., Macias, S., and Fiedorowicz, B.K. (1997) Geotechnical properties of debris-flow sediments and slurries. In: C-L. Chen (ed.), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (pp. 249–259). American Society of Civil Engineers, New York.

    Google Scholar 

  • Malvern, L.E. (1969) Introduction to the Mechanics of a Continuous Medium (713 pp.). Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • O'Brien, J.S. and Julien, P.Y. (1988) Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering, 114, 877–887.

    Google Scholar 

  • O'Brien, J.S., Julien, P.Y, and Fullerton, W.T. (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119, 244–261.

    Article  Google Scholar 

  • Parsons, J.D., Whipple, K.X., and Simioni, A. (2001) Experimental study of the grain-flow, fluid-mud transition in debris flows. Journal of Geology, 109, 427–447.

    Article  Google Scholar 

  • Passman, S.L. and McTigue, D.F. (1986) A new approach to the effective stress principle. In: S.K. Saxena (ed.), Compressibility Phenomena in Subsidence (pp. 79–91). Engineering Foundation, New York.

    Google Scholar 

  • Phillips, C.J. and Davies, T.R.H. (1991) Determining theological parameters of debris flow material. Geomorphology, 4, 101–110.

    Article  Google Scholar 

  • Rickenmann, D. and Chen, C-L. (eds) (2003) Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (1335 pp.). Millpress, Rotterdam.

    Google Scholar 

  • Savage, S.B. and Hutter, K. (1989) The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.

    Article  Google Scholar 

  • Savage, S.B. and Hutter, K. (1991) The dynamics of avalanches of granular materials from initiation to runout Part I: Analysis. Acta Mechanica, 86, 201–223.

    Article  Google Scholar 

  • Savage, S.B. and Iverson, R.M. (2003) Surge dynamics coupled to pore-pressure evolution in debris flows. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (Vol. 1, pp. 503–514). Millpress, Rotterdam.

    Google Scholar 

  • Savage, S.B. and Sayed, M. (1984) Stresses developed in dry cohesionless granular materials sheared in an annular shear cell. Journal of Fluid Mechanics, 142, 391–430.

    Article  Google Scholar 

  • Sharp, R.P. and Nobles, L.H. (1953) Mudflow of 1941 at Wrightwood, southern California. Geological Society of America Bulletin, 64, 547–560.

    Article  Google Scholar 

  • Terzaghi, K. (1936) The shearing resistance of saturated soils. Proceedings of the 1st International Conference on Soil Mechanics (Vol. 1, pp. 54–56).

    Google Scholar 

  • Vanoni, V.A. (ed.) (1975) Sedimentation Engineering (745 pp.). American Society of Civil Engineers, New York.

    Google Scholar 

  • Vreugdenhil, C.B. (1994) Numerical Methods for Shallow-water Flow (261 pp.). Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  • Walton, O.R. (1993) Numerical simulation of inelastic, frictional particle-particle interactions. In: M.C. Roco (ed.), Particulate Two-Phase Flow (pp. 884–911). Butterworth-Heinemann, Boston.

    Google Scholar 

  • Wieczorek, G.F. and Naeser, N.D. (eds) (2000) Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (608 pp.). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Yamagishi, M., Mizuyama, T., Satofuka, Y., and Mizuno, H. (2003) Behavior of big boulders in debris flow containing sand and gravel. In: D. Rickenmann, and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (Vol. 1, pp. 411–420). Millpress, Rotterdam.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Praxis. Springer Berlin Heidelberg

About this chapter

Cite this chapter

Iverson, R.M. (2005). Debris-flow mechanics. In: Debris-flow Hazards and Related Phenomena. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27129-5_6

Download citation

Publish with us

Policies and ethics