Skip to main content

Two Mathematical Approaches to Stochastic Resonance

  • Chapter
Interacting Stochastic Systems

Summary

We consider a random dynamical system describing the diffusion of a small-noise Brownian particle in a double-well potential with a periodic perturbation of very large period. According to the physics literature, the system is in stochastic resonance if its random trajectories are tuned in an optimal way to the deterministic periodic forcing. The quality of periodic tuning is measured mostly by the amplitudes of the spectral components of the random trajectories corresponding to the forcing frequency. Reduction of the diffusion dynamics in the small noise limit to a Markov chain jumping between its meta-stable states plays an important role.

We study two different measures of tuning quality for stochastic resonance, with special emphasis on their robustness properties when passing to the reduced dynamics of the Markov chains in the small noise limit. The first one is the physicists favourite, spectral power amplification. It is analyzed by means of the spectral properties of the diffusion’s infinitesimal generator in a framework where the system switches every half period between two spatially antisymmetric potential states. Surprisingly, resonance properties of diffusion and Markov chain differ due to the crucial significance of small intra-well fluctuations for spectral concepts. To avoid this defect, we design a second measure of tuning quality which is based on the pure transition mechanism between the meta-stable states. It is investigated by refined large deviation methods in the more general framework of smooth periodically varying potentials, and proves to be robust for the passage to the reduced dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. S. Anishchenko, A. B. Neiman, F. Moss, and L. Schimansky-Geier. Stochastic resonance: noise-enhanced order. Physics-Uspekhi, 42(1):7–36, 1999.

    Article  Google Scholar 

  2. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. Preprint No. 767, Weierstraß-Institut für angewandte Analysis und Stochastik (WIAS), Berlin, 2002. To appear in J. Eur. Math. Soc.

    Google Scholar 

  3. N. Berglund and B. Gentz. A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential. Ann. Appl. Probab., 12(4):1419–1470, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Berglund and B. Gentz. Beyond the Fokker-Planck equation: Pathwise control of noisy bistable systems. J. Phys. A, Math. Gen., 35(9):2057–2091, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Berglund and B. Gentz. Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Relat. Fields, 122(3):341–388, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues. Preprint No. 768, Weierstraß-Institut für angewandte Analysis und Stochastik (WIAS), Berlin, 2002. To appear in J. Eur. Math. Soc.

    Google Scholar 

  7. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. The mechanism of stochastic resonance. J. Phys. A, 14:453–457, 1981.

    Article  MathSciNet  Google Scholar 

  8. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. Stochastic resonance in climatic changes. Tellus, 34:10–16, 1982.

    Google Scholar 

  9. R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani. A theory of stochastic resonance in climatic change. SIAM J. Appl. Math., 43:563–578, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. I. Budyko. The effect of solar radiation variations on the climate of the earth. Tellus, 21:611–619, 1969.

    Google Scholar 

  11. [DLM+95]_M. I. Dykman, D. G. Luchinskii, R. Mannella, P. V. E. McClintock, N. D. Stein, and N. G. Stocks. Stochastic resonance in perspective. Nuovo Cimento D, 17:661–683, 1995.

    Google Scholar 

  12. A. Erdélyi. Asymptotic expansions. Dover Publications, Inc., New York, 1956.

    MATH  Google Scholar 

  13. J.-P. Eckmann and L. E. Thomas. Remarks on stochastic resonance. J. Phys. A, 15:261–266, 1982.

    Article  MathSciNet  Google Scholar 

  14. M. I. Freidlin. Quasi-deterministic approximation, metastability and stochastic resonance. Physica D, 137(3–4):333–352, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni. Stochastic resonance. Reviews of Modern Physics, 70:223–287, January 1998.

    Article  Google Scholar 

  16. S. Herrmann and P. Imkeller. The exit problem for diffusions with time periodic drift and stochastic resonance. To appear in Ann. Appl. Probab.

    Google Scholar 

  17. S. Herrmann and P. Imkeller. Barrier crossings characterize stochastic resonance. Stochastics and Dynamics, 2(3):413–436, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Imkeller. Energy balance models — viewed from stochastic dynamics. In Imkeller, P. et al., editors, Stochastic climate models. Proceedings of a workshop, Chorin, Germany, Summer 1999., volume 49 of Prog. Probab., pages 213–240, Basel, 2001. Birkhäuser.

    Google Scholar 

  19. P. Imkeller and I. Pavlyukevich. Stochastic resonance in two-state Markov chains. Arch. Math., 77(1):107–115, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Imkeller and I. Pavlyukevich. Model reduction and stochastic resonance. Stochastics and Dynamics, 2(4):463–506, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7:284–304, 1940.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. McNamara and K. Wiesenfeld. Theory of stochastic resonance. Physical Review A (General Physics), 39:4854–4869, May 1989.

    Article  Google Scholar 

  23. C. Nicolis. Stochastic aspects of climatic transitions — responses to periodic forcing. Tellus, 34:1–9, 1982.

    Article  MathSciNet  Google Scholar 

  24. F. W. J. Olver. Asymptotics and special functions. Computer Science and Applied Mathematics. Academic Press, a subsidiary of Harcourt Brace Jovanovich, Publishers, New York-London, 1974.

    Google Scholar 

  25. I. E. Pavlyukevich. Stochastic Resonance. PhD thesis, Humboldt-Universität, Berlin, 2002. Logos-Verlag, ISBN 3-89722-960-9.

    Google Scholar 

  26. W. B. Sellers. A global climate model based on the energy balance of the earth-atmosphere system. J. Appl. Meteor., 8:301–320, 1969.

    Article  Google Scholar 

  27. K. Wiesenfeld and F. Jaramillo. Minireview of stocastic resonance. Chaos, 8:539–548, September 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrmann, S., Imkeller, P., Pavlyukevich, I. (2005). Two Mathematical Approaches to Stochastic Resonance. In: Deuschel, JD., Greven, A. (eds) Interacting Stochastic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27110-4_15

Download citation

Publish with us

Policies and ethics