Skip to main content

The Structure of Foot-and-Mouth Disease Virus

  • Chapter
Foot-and-Mouth Disease Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 288))

Abstract

Structural studies of foot-and-mouth disease virus (FMDV) have largely focused on the mature viral particle, providing atomic resolution images of the spherical protein capsid for a number of sero- and sub-types, structures of the highly immunogenic surface loop, Fab and GAG receptor complexes. Additionally, structures are available for a few non-structural proteins. The chapter reviews our current structural knowledge and its impact on our understanding of the virus life cycle proceeding from the mature virus through immune evasion/inactivation, cell-receptor binding and replication and alludes to future structural targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya, R., Fry, E., Logan, D., Stuart, D., Brown, F. and Rowlands, D. (1990) New aspects of positive strand RNA viruses. In: M.A. Brinton and F.X. Heinz (Eds), Some observations on the three-dimensional structure of foot-and-mouth disease virus

    Google Scholar 

  • Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. and Brown, F. (1989) The three-dimensional structure of foot-and-mouth disease virus at 2.9-Ã… resolution. Nature (London) 337, 709–716

    Article  PubMed  Google Scholar 

  • Adams, P., Lea, S., Newman, J., Blakemore, W., Najjam, S., King, A., Stuart, D. and Fry, E. A three-dimensional structure for foot-and-mouth disease virus SAT 1 serotype. (in preparation)

    Google Scholar 

  • Allaire, M., Chernaia, M.M., Malcolm, B.A. and James, M.N. (1994) Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369, 72–6

    Article  PubMed  Google Scholar 

  • Andino, R., Rieckhof, G.E., Achacoso, P.L. and Baltimore, D. (1993) Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA. EMBO J. 12, 3587–98

    PubMed  Google Scholar 

  • Andino, R., Rieckhof, G.E. and Baltimore, D. (1990) A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63, 369–80

    Google Scholar 

  • Bablanian, G.M. and Grubman, M.J. (1993) Characterization of the foot-and-mouth disease virus 3C protease expressed in Escherichia coli. Virology 197, 320–7

    Article  PubMed  Google Scholar 

  • Baranowski, E., Ruiz-Jarabo. C. M., Sevilla. N., Andreu. D., Beck, E. and E. Domingo, E. (2000) Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: Flexibility in Aphthovirus receptor usage. J. Virol. 74, 1641–1647

    Article  PubMed  Google Scholar 

  • Baranowski, E., Sevilla, N., Verdaguer, N., Ruiz-Jarabo, C. M., Beck, E. and Domingo, E. (1998) Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J. Virol. 72, 6362–6372

    PubMed  Google Scholar 

  • Barnett, P.V., Ouldridge, E. J., Rowlands, D. J., Brown, F. and Parry, N. R. (1989) Neutralising epitopes on type O foot-and-mouth disease virus. I. Identification and characterisation of three functionally independent, conformational sites. J. Gen. Virol. 70, 1483–1491

    PubMed  Google Scholar 

  • Barton, D.J., O'Donnell, B.J. and Flanegan, J.B. (2001) 5′ cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J. 20, 1439–48

    Article  PubMed  Google Scholar 

  • Baxt, B. (1987) Effect of lysomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res. 7, 257–271

    Article  PubMed  Google Scholar 

  • Baxt, B. and Becker, Y. (1990) The effect of peptides containing the arginine-glycine-aspartic acid sequence on the adsorption of foot-and-mouth disease virus to tissue culture cells. Virus Genes 4, 73–83

    Article  PubMed  Google Scholar 

  • Baxt, B., Vakharia, V., Moore, D. M., Franke, A. J. and Morgan, D. O. (1989) Analysis of neutralising antigenic sites on the surface of type A12 foot-and-mouth disease virus. J. Virol. 63, 2143–2151

    PubMed  Google Scholar 

  • Beard, C.W. and Mason, P.W. (2000) Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J Virol 74, 987–91

    Article  PubMed  Google Scholar 

  • Beckman, M.T. and Kirkegaard, K. (1998) Site size of cooperative single-stranded RNA binding by poliovirus RNA-dependent RNA polymerase. J. Biol. Chem. 273, 6724–30

    Article  PubMed  Google Scholar 

  • Belsham, G., Abrams, C.C., King, A.M.Q., Roosien, J. and Vlak, J.M. (1991) Myristoylation of foot-and-mouth disease virus capsid precursors is independent of other viral proteins and occurs in both mammalian and insect cells. J. Gen. Virol. 72, 747–751

    PubMed  Google Scholar 

  • Belsham, G.J., McInerney, G.M. and Ross-Smith, N. (2000) Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J. Virol. 74, 272–80

    PubMed  Google Scholar 

  • Bergmann, E.M., Mosimann, S.C., Chernaia, M.M., Malcolm, B.A. and James, M.N.G. (1997) The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J. Virol. 71, 2436–2448

    PubMed  Google Scholar 

  • Berinstein, A., Roivainen, M., Hovi, T., Mason, P. W. and Baxt, B. (1995) Antibodies to the vitronectin receptor (integrin αvβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J. Virol. 69, 2664–2666

    PubMed  Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N. and Bourne P.E. (2000) The Protein Data Bank. Nucleic Acids Res. 28,235–242

    Article  PubMed  Google Scholar 

  • Bernfield, M., Gotte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J. and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777

    Article  PubMed  Google Scholar 

  • Boege, U., Kobasa, D., Onodera, S., Parks, G., Palmenberg, A. and Scraba, D. (1991) Characterisation of mengo virus neutralisation epitopes. Virology 181, 1–13

    Article  PubMed  Google Scholar 

  • Brown, F., and Cartwright, B. (1961) Dissociation of foot-and-mouth disease virus into its nucleic acid and protein components. Nature (London). 192, 1163–1164

    PubMed  Google Scholar 

  • Carrillo, E. C., Giachetti, C. and Campos, R. H. (1984) Effect of lysomotropic agents on the foot-and-mouth disease virus replication. Virology 135, 542–545

    Article  PubMed  Google Scholar 

  • Chen, W-J., Goldstein, J. L. and Brown, M. S. (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265, 3116–3123

    PubMed  Google Scholar 

  • Chow, M., Newman, J., Filman, D., Hogle, J.R., Rowlands, D.J. and Brown, F. (1987) Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature (London) 327, 482–486

    Article  PubMed  Google Scholar 

  • Cockburn, J.J.B., Abrescia N.G.A., Grimes, J.M., Sutton, G.C., Diprose, J.M., Benevides, J., Thomas Jnr, G., Bamford, J.K.H., Bamford, D.H., Stuart, D.I. (2004) A biological membrane interacting with protein and DNA visualized in bacteriophage PRD1 at high resolution. (In preparation)

    Google Scholar 

  • Crowther, J.R., Farias, S., Carpenter, W.C. and Samuel, A.R. (1993) Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterisation of single and quintuple monoclonal antibody escape mutants. J. Gen.Virol. 74, 1547–1553

    PubMed  Google Scholar 

  • Curry, S., Abrams, C.C., Fry, E., Crowther, J.C., Belsham, G.J., Stuart, D.I. and King, A.M.Q. (1995) Viral RNA modulates the acid sensitivity of foot-and-mouth disease virus capsid. J. Virol. 69, 430–438

    PubMed  Google Scholar 

  • Curry, S., Fry, E., Blakemore, B., Abu-Ghazaleh, R., Jackson, T., King, A., Lea, S., Newman, J., Rowlands, D. and Stuart, D. (1996) Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. Structure 4, 135–145

    Article  PubMed  Google Scholar 

  • Curry, S., Fry, E., Blakemore, W., Abu-Ghazaleh, R., Jackson, T., King, A., Lea, S., Newman, J. and Stuart, D. (1997) Dissecting the roles of VP0 cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J. Virol. 71, 9743–9752

    PubMed  Google Scholar 

  • Donnelly, M.L., Gani, D., Flint, M., Monaghan, S. and Ryan, M.D. (1997) The cleavage activities of aphthovirus and cardiovirus 2A proteins. J. Gen. Virol. 78, 13–21

    PubMed  Google Scholar 

  • Donnelly, M. L., Luke, G., Mehrotra, A., Li, X., Hughes, L.e.., Gani, D. and Ryan, M.D. (2001). Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J. Gen. Virol. 82, 1013–25

    PubMed  Google Scholar 

  • Ellard, F. M., Drew, J., Blakemore, W. E., Stuart, D. I. and King, A. M. Q. (1999) Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and mouth disease virus capsids. J. Gen. Virol. 80, 1911–1918

    PubMed  Google Scholar 

  • Escarmis, C., Carrillo, E. C., Ferrer, M., Arriaza, J. F. G., Lopez, N., Tami, C., Verdaguer, N. Domingo, E. and Franze-Fernandez, M. T. (1998) Rapid selection in modified BHK-21 cells of a foot-and-mouth disease virus variant showing alterations in cell tropism. J. Virol. 72, 10171–10179

    PubMed  Google Scholar 

  • Esnouf, R. M. (1997) An extensively modified version of MolScript which includes greatly enhanced colouring capabilities. J. Mol. Graphics 15, 132–134

    Article  Google Scholar 

  • Falk, M.M., Sobrino, F. and Beck, E. (1992) VPg gene amplification correlates with infective particle formation in foot-and-mouth disease virus. J. Virol. 66, 2251–60

    PubMed  Google Scholar 

  • Filman, D.J., Syed, R., Chow, M., Macadam, A.J., Minor, P.D. and Hogle, J.M. (1989) Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 8, 1567–1579

    PubMed  Google Scholar 

  • Forss, S. and Schaller, H. (1982) A tandem repeat gene in a picornavirus. Nucleic Acids Res 10, 6441–50

    PubMed  Google Scholar 

  • Fox, G., Parry, N.R., Barnett, P.V., McGinn, B., Rowlands, D.J. and Brown, F. (1989) Cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (Arginine-Glycine-Aspartic Acid). J. Gen. Virol. 70, 625–637

    PubMed  Google Scholar 

  • Fox, G., Stuart, D., Acharya, K.R., Fry, E., Rowlands, D.J. and Brown, F. (1987) Crystallisation and preliminary X-ray diffraction analysis of foot-and-mouth disease virus. J. Mol. Biol. 196, 591–597

    Article  PubMed  Google Scholar 

  • Fry, E., Lea, S.M., Jackson, T., Newman, J.W.I., Ellard, F.M., Blakemore, W.E., Abu-Ghazaleh, R., Samuel, A., King, A.M.Q. and Stuart, D.I. (1999) The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 18, 543–554

    Article  PubMed  Google Scholar 

  • Fry, E., Logan, D., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Jackson, T., Lea, S., Lewis, R., Newman, J., Parry, N., Rowlands, D., King, A. and Stuart, D. (1991) Molecular studies on the structure of foot-and-mouth disease virus. In: P. Goodenough (Ed), Protein Engineering, pp. 71–80. CPL Press, Berkshire, UK

    Google Scholar 

  • Fry, E., Logan, D., Acharya, R., Fox, G., Rowlands, D., Brown, F. and Stuart, D. (1990) Architecture and topography of an aphthovirus. Semin. Virol. 1, 439–451

    Google Scholar 

  • Giancotti, F. G., and Ruoslahti, E. (1999) Integrin signalling. Science 285, 1028–1032

    Article  PubMed  Google Scholar 

  • Grubman, M.J., Zellner, M., Bablanian, G., Mason, P.W. and Piccone, M.E. (1995) Identification of the active-site residues of the 3C proteinase of foot-and-mouth disease virus. Virology 213, 581–9

    Article  PubMed  Google Scholar 

  • Guarné, A., Hampoelz, B., Glaser, W., Carpena, X., Tormo, J., Fita, I. and Skern, T. (2000) Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. J. Mol. Biol. 302, 1227–1240

    Article  PubMed  Google Scholar 

  • Hansen, J.L., Long, A.M. and Schultz, S.C. (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5, 1109–22

    Article  PubMed  Google Scholar 

  • Hendry, E., Hatanaka, H., Fry, E., Smyth, M., Tate, J., Stanway, G., Santti, J., Maaronen, M., Hyypia, T. and Stuart, D. (1999) The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7, 1527–1538

    Article  PubMed  Google Scholar 

  • Herold, J. and Andino, R. (2001) Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol. Cell 7, 581–91

    Article  PubMed  Google Scholar 

  • Hewat, E.A., Verdaguer, N., Fita, I., Blakemore, W., Brookes, S., King, A., Newman, J., Domingo, E., Mateu, M.G. and Stuart, D.I. (1997) Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: Positioning of a highly mobile antigenic loop. EMBO J. 16, 1492–1500

    Article  PubMed  Google Scholar 

  • Hinton, T.M., Ross-Smith, N., Warner, S., Belsham, G.J. and Crabb, B.S. (2002) Conservation of L and 3C proteinase activities across distantly related aphthoviruses. J. Gen. Virol. 83, 3111–3121

    PubMed  Google Scholar 

  • Hobson, S.D., Rosenblum, E.S., Richards, O.C., Richmond, K., Kirkegaard, K. and Schultz, S.C. (2001) Oligomeric structures of poliovirus polymerase are important for function. EMBO J. 20, 1153–63

    Article  PubMed  Google Scholar 

  • Hogle, J. M. 2002. Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu. Rev. Microbiol. 56:677–702

    Article  PubMed  Google Scholar 

  • Hogle, J.M., Chow, M. and Filman, D.J. (1985) Three-dimensional structure of poliovirus at 2.9 Ã… resolution. Science 229, 1358–1365

    PubMed  Google Scholar 

  • Hogle, J.M. and Filman, D.J. (1989) The antigenic structure of poliovirus. Phil. Trans. R. Soc. Lond. B 323, 467–478

    Google Scholar 

  • Jackson, T., Blakemore, W., Newman, J., Knowles, N.J., Mould, A.P., Humphries, M.J. and King, A.M.Q. (2000a) Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin α5β1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J. Gen. Virol. 81, 1383–1391

    PubMed  Google Scholar 

  • Jackson, T., Ellard, F.M., Abu Ghazaleh, R., Brookes, S.M., Blakemore, W.E., Corteyn, A.H., Stuart, D.I., Newman, J.W.I. and King, A.M.Q. (1996) Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70(8), 5282–5287

    PubMed  Google Scholar 

  • Jackson, T., Mould, A. P., Sheppard, D., Denyer, M. and King, A. (2002) Integrin αvβ1 is a receptor for foot-and-mouth disease virus. J. Virol. 76, 935–941

    Article  PubMed  Google Scholar 

  • Jackson, T., Sharma, A., Abu-Ghazaleh, R., Blakemore, W., Ellard, E., Simmons, D.L., Stuart, D.I., Newman, J.W.I. and King, A.M.Q. (1997) Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin αvβ3 in vitro. J. Virol. 71, 8357–8361

    PubMed  Google Scholar 

  • Jackson, T., Sheppard, D., Denyer, M., Blakemore, W. and King, A. (2000b) The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. J. Virol. 74, 4949–4956

    Article  PubMed  Google Scholar 

  • Kitson, J.D.A., McCahon, D. and Belsham, G.J. (1990) Sequence analysis of monoclonal antibody resistant mutants of type O foot-and-mouth disease virus: evidence for involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 179, 26–34

    Article  PubMed  Google Scholar 

  • Kjellen, L., and Lindahl, U. (1991) Proteoglycans–structures and interactions. Annu. Rev. Biochem. 60, 443–475

    Article  PubMed  Google Scholar 

  • Kraft, S., Diefenbach, B., Mehta, R., Jonczyk, A., Luckenbach, A. and Goodman, S. L. (1999) Definition of an unexpected ligand recognition motif for αvβ6 integrin. J. Biol. Chem. 274, 1979–1985

    Article  PubMed  Google Scholar 

  • Lea, S., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Fry, E., Jackson, T., King, A., Logan, D., Newman, J. and Stuart, D. (1995) Structural comparison of two strains of foot-and-mouth disease virus subtype O1 and a laboratory antigenic variant, G67. Structure 3, 571–580

    Article  PubMed  Google Scholar 

  • Lea, S., Hernandez, J., Blakemore, W., Brocchi, E., Curry, S., Domingo, E., Fry, E., Abu-Ghazaleh, R., King, A., Newman, J., Stuart, D. and Mateu, M.G. (1994) The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2, 123–139

    Article  PubMed  Google Scholar 

  • Lewis, J.K., Bothner, B., Smith, T.J. and Siuzdak, G. (1998) Antiviral agent blocks breathing of the common cold virus. Proc. Natl. Acad. Sci. USA 95, 6774–6778

    Article  PubMed  Google Scholar 

  • Liebermann, HT., Dolling, R., Schmidt, D. and Thalmann, G. (1991) RGD-containing peptides of VP1 of foot-and-mouth disease virus (FMDV) prevent virus infection in vitro. Acta Virol. 35, 90–93

    PubMed  Google Scholar 

  • Loeffler, F. and Frosch, P. (1897) Summarischer Bericht über der Ergebnisse der Untersuchungen zur Erforschung der Maul-und Klauenseuche. Zentralblatt Bakt. Abt. Orig. 22, 257–259

    Google Scholar 

  • Logan, D., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Jackson, T., King, A., Lea, S., Lewis, R., Newman, J., Parry, N., Rowlands, D., Stuart, D. and Fry, E. (1993) Structure of a major immunogenic site on foot-and-mouth disease virus. Nature (London) 362, 566–568

    Article  PubMed  Google Scholar 

  • Luo, M., Vriend, G., Kamer, G., Minor, I., Arnold, E., Rossmann, M.G., Boegé, U., Scraba, D.G., Duke, G.M. and Palmenberg, A.C. (1987) The atomic structure of mengo virus at 3.0 Ã… resolution. Science 235, 182–191

    PubMed  Google Scholar 

  • Lubroth, J. and Brown, F. (1995) Identification of native foot-and-mouth disease virus non-structural protein 2C as a serological indicator to differentiate infected from vaccinated livestock. Res. Vet. Sci. 59, 70–8

    Article  PubMed  Google Scholar 

  • Mason. P. W., Baxt, B., Brown, F., Harber, J., Murdin, A. and Wimmer, E. (1993) Antibody-complexed foot-and-mouth disease virus, but not poliovirus, can infect cells via the Fc receptor. Virology 192, 568–577

    Article  PubMed  Google Scholar 

  • Mason, P.W., Rieder, E. and Baxt, B. (1994) RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc. Natl. Acad. Sci. USA 91, 1932–6

    PubMed  Google Scholar 

  • Martinez, M. A., Verdaguer, N., Mateu, M. and Domindo, E. (1997) Evolution subverting essentiality; dispensability of the cell attachment Arg-gly-asp motif in multiply pasaged foot-and-mouth disease virus. Proc. Natl. Acad. Sci. USA 94, 6798–6802

    Article  PubMed  Google Scholar 

  • Mateu, M. G., Luz Valero, M., Andreu, D. and Domingo, E. (1996) Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effects on cell recognition. J. Biol. Chem. 271, 12814–12819

    Article  PubMed  Google Scholar 

  • Matthews, D.A., Smith, W.W., Ferre, R.A., Condon, B., Budahazi, G., Sisson, W., Villafranca, J.E., Janson, C.A., McElroy, H.E., Gribskov, C.L. et al. (1994) Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77, 761–71

    Article  PubMed  Google Scholar 

  • McCahon, D., Crowther, J.R., Belsham, G.J., Kitson, J.D.A., Duchesne, M., Have, P., Meloen, R.H., Morgan, D.O. and De Simone, F. (1989) Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralisation; identification by single and multiple monoclonal antibody-resistant mutants. J. Gen. Virol. 70, 639–645

    PubMed  Google Scholar 

  • Merritt, E.A. and Murphy, M.E.P. (1994) Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Cryst. D50, 869–873

    Google Scholar 

  • Miller, L. C., Blakemore, W. E., Sheppard, D., Atakilit, A., King, A. M. Q. and Jackson. T. (2001) Role of the cytoplasmic domain of the β-subunit of integrin αvβ6 in infection by foot-and mouth disease virus. J. Virol. 75, 4158–4164

    Article  PubMed  Google Scholar 

  • Mosimann, S.C., Chernaia, M.M., Sia, S., Plotch, S. and James, M.N.G. (1997) Refined X-ray crystallographic structure of the poliovirus 3C gene product. J. Mol. Biol. 273, 1032-

    Article  PubMed  Google Scholar 

  • Neff, S., Mason, P. W. and Baxt. B. (2000) High-efficiency utilization of the bovine integrin αvβ3 as a receptor for foot-and-mouth disease virus is dependent on the bovine β3 subunit.. J. Virol. 74, 7298–7306

    Article  PubMed  Google Scholar 

  • Neff, S., Sa-Carvalho, D., Rieder, E., Mason, P. W., Blystone, S. D., Brown, E. J. and Baxt. B. (1998) Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. J. Virol. 72, 3587–3594

    PubMed  Google Scholar 

  • O'Donnell, V.K., Pacheco, J.M., Henry, T.M. and Mason, P.W. (2001) Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology 287, 151–62

    Article  PubMed  Google Scholar 

  • Ochoa, W.F., Kalko, S.G., Mateu, M.G., Gomes, P., Andreu, D., Domingo, E., Fita, I. and Verdaguer, N. (2000) A multiply substituted G-H loop from foot-and-mouth disease virus in complex with a neutralizing antibody. A role for water molecules. J. Gen. Virol. 81, 1495–1505

    PubMed  Google Scholar 

  • Ohad, M., Weber, I., Frangakis, A.S., Nicastro, D., Gerisch, G. and Baumeister, W. (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 1209–1213

    Article  PubMed  Google Scholar 

  • Pacheco, J.M., Henry, T.M., O'Donnell, V.K., Gregory, J.B. and Mason, P.W. (2003) Role of nonstructural proteins 3A and 3B in host range and pathogenicity of foot-and-mouth disease virus. J. Virol. 77, 13017–13027

    Article  PubMed  Google Scholar 

  • Palmenberg, A.C., Parks, G.D., Hall, D.J., Ingraham, R.H., Seng, T.W. and Pallai, P.V. (1992) Proteolytic processing of the cardioviral P2 region: primary 2A/2B cleavage in clone-derived precursors. Virology 190, 754–62

    Article  PubMed  Google Scholar 

  • Parry, N., Fox, G., Rowlands, D., Brown, F., Fry, E., Acharya, R. and Stuart, D. (1990) Structural and serological evidence for a novel mechanism of immune evasion in foot-and-mouth disease virus. Nature (London) 347, 569–572

    Article  PubMed  Google Scholar 

  • Parry, N.R., Ouldridge, E.J., Barnett, P.V. and Brown, F. (1989) Neutralising epitopes of type O foot-and-mouth disease virus. II. Mapping three conformational sites with synthetic peptide reagents. J. Gen. Virol. 70, 1493–1503

    PubMed  Google Scholar 

  • Parry, N.R., Ouldridge, E.J., Barnett, P.V., Rowlands, D.J., Brown, F., Bittle, J.L., Houghten, R.A. and R.A., L. (1985) Identification of neutralizing epitopes of foot-and-mouth disease virus. In: R.A. Lerner, R.M. Chanock and F. Brown (Eds), Vaccines ‘85, pp. 211–216. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Paul, A.V., Peters, J., Mugavero, J., Yin, J., van Boom, J.H. and Wimmer, E. (2003) Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J. Virol. 77, 891–904

    Article  PubMed  Google Scholar 

  • Petersen, J.F.W., Cherney, M.M., Liebig, H-D., Skern, T., Kuechler, E. and James, M.N.G. (1999) The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. EMBO J. 18, 5463–5475

    Article  PubMed  Google Scholar 

  • Pfaff, E., Thiel, H-J., Beck, E., Strohmaier, K. and Schaller, H. (1988) Analysis of neutralizing epitopes on foot-and-mouth disease virus. J. Virol. 62, 2033–2040

    PubMed  Google Scholar 

  • Richards, O.C. and Ehrenfeld, E. (1998) Effects of poliovirus 3AB protein on 3D polymerase-catalyzed reaction. J. Biol. Chem. 273, 12832–40

    Article  PubMed  Google Scholar 

  • Rieder, E., Baxt, B. and Mason, P.W. (1994) Animal-derived antigenic variants of foot-and-mouth disease virus type A12 have low affinity for cells in culture. J. Virol. 68, 5296–5299

    PubMed  Google Scholar 

  • Rossmann, M.G., Arnold, E., Erickson, J.W., Frankenburger, E.A., Griffith, J.P., Hecht, H.J., Johnson, J.E., Kamer, G., Luo, M., Mosser, A.C., Rueckert, R.R., Sherry, B. and Vriend, G. (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature (London) 317, 145–153

    Article  PubMed  Google Scholar 

  • Rueckert, R.R. (1996) Picornaviridae: The viruses and their replication. In: B.N. Fields (Ed), Fields Virology, Third ed., pp. 609–654. Vol. 1. 2 vols. Lippincott-Raven Publishers, Philadelphia, PA

    Google Scholar 

  • Sa-Carvalho, D., Rieder, E., Baxt, B., Rodarte, R., Tanuri, A. and Mason, P.W. (1997) Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J. Virol. 71, 5115–5123

    PubMed  Google Scholar 

  • Sharma, A., Rao, Z., Fry, E., Booth, T., Jones, E.Y., Rowlands, D.J., Simmons, D.L. and Stuart, D.I. (1997) Specific interactions between human integrin αvβ3 and chimeric hepatitis B virus core particles bearing the receptor-binding epitope of foot-and-mouth disease virus. Virology 239, 150–157

    Article  PubMed  Google Scholar 

  • Sherry, B., Mosser, A.G., Colonno, R.J. and Ruecket. R.R. (1986) Use of monoclonal antibodies to identify four neutralisation epitopes on a common cold picornavirus, human rhinovirus 14. J. Virol. 57, 246–257

    PubMed  Google Scholar 

  • Spanchak, K., Namy, O., Brierley, I. and Gilbert, R.C. In preparation

    Google Scholar 

  • Stave, J.W., Card, J.L., Morgan, D.O. and Vakharia, V.N. (1988) Neutralisation sites of type O1 foot-and-mouth disease virus defined by monoclonal antibodies and neutralisation-escape mutants. Virology 162, 21–29

    Article  PubMed  Google Scholar 

  • Strauss, D.M., Glustrom, L.W. and Wuttke, D.S. (2003) Towards an understanding of the poliovirus replication complex: the solution structure of the soluble domain of the poliovirus 3A protein. J. Mol. Biol. 330, 225–234

    Article  PubMed  Google Scholar 

  • Surovoi, A. Y., Ivanov, V. T., Chepurkin, A. V., Ivanyuschenkov, V. N. and Dryagalin, N. N. (1988) Is the Arg-Gly-Asp sequence the site for foot-and-mouth disease virus binding with cell receptor? Sov. J. Bioorg. Chem. 14, 965–968

    Google Scholar 

  • Thomas, A.A.M., Woortmeijer, R.J., Puijk, W. and Barteling, S.J. (1988) Antigenic sites on foot-and-mouth disease virus type A10. J. Virol. 62, 2782–2789

    PubMed  Google Scholar 

  • Trowbridge, I. S., Collawn, J. F. and Hopkins, C. R. (1993) Signal-dependent membrane protein trafficking in the endocytotic pathway. Annu. Rev. Cell Biol. 9, 129–161

    Article  PubMed  Google Scholar 

  • van Vlijmen, H.W.T., Curry, S., Schaefer, M. and Karplus, M. (1998) Titration calculations of foot-and-mouth disease virus capsids and their stabilities as a function of pH. J. Mol. Biol. 275, 295–308

    Article  PubMed  Google Scholar 

  • Verdaguer, N., Mateu, M.G., Andreu, D., Giralt, E., Domingo, E. and Fita, I. (1995) Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the arg-gly-asp motif in the interaction. EMBO J. 14, 1690–1696

    PubMed  Google Scholar 

  • Verdaguer, N., Mateu, M.G., Bravo, J., Tormo, J., Giralt, E., Andreu, D., Domingo, E. and Fita, I. (1994) Crystallisation and preliminary X-ray diffraction analysis of a monoclonal FAb fragment against foot-and-mouth disease virus and of its complex with the main antigenic site peptide. Proteins 18, 201–203

    Article  PubMed  Google Scholar 

  • Verdaguer, N., Schoehn, G., Ochoa, W.F., Fita, I., Brookes, S., King, A., Domingo, E., Mateu, M.G., Stuart, D. and Hewat, E.A. (1999) Flexibility of the major antigenic loop of foot-and-mouth disease virus bound to a Fab fragment of a neutralizing antibody: structure and neutralization. Virology 255, 260–268

    Article  PubMed  Google Scholar 

  • Verlinden, Y., Cuconati, A., Wimmer, E. and Rombaut, B. (2000) Cell-free synthesis of poliovirus: 14S subunits are the key intermediates in the encapsidation of poliovirus RNA. J. Gen. Virol. 81, 2751–4

    PubMed  Google Scholar 

  • Wild, T., Burroughs, N. and Brown, F. (1969) Surface structure of foot-and-mouth disease virus. J. Gen. Virol. 4, 313–320

    PubMed  Google Scholar 

  • Wistow, G., Turnell, B., Summers, L., Slingsby, C., Moss, D., Miller, L., Lindley, P. and Blundell, T. (1983) X-ray analysis of the eye lens protein g-II crystallin at 1.9 Ã… resolution. J. Mol. Biol. 170, 175–202

    PubMed  Google Scholar 

  • Xiang, W., Cuconati, A., Hope, D., Kirkegaard, K. and Wimmer, E. (1998) Complete protein linkage map of poliovirus P3 proteins: interaction of polymerase 3Dpol with VPg and with genetic variants of 3AB. J. Virol. 72, 6732–41

    PubMed  Google Scholar 

  • Xiang, W., Harris, K.S., Alexander, L. and Wimmer, E. (1995) Interaction between the 5′-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. J. Virol. 69, 3658–67

    PubMed  Google Scholar 

  • Xie, Q.-C., McCahon, D. Crowther, J.R., Belsham, G.J. and Mc Cullough, K. C. (1987) Neutralisation of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J. Gen. Virol. 68, 1637–1647

    PubMed  Google Scholar 

  • Xiong, J-P., Stehle, T., Diefenbach, B., Zhang, R., Dunker, R., Scott, D.L., Joachimiak, A., Goodman, S.L., Arminaout, M.A. (2001) Crystal structure of the extracellular segment of the integrin alphavbeta3. Science 294, 339–345

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Fry, E.E., Stuart, D.I., Rowlands, D.J. (2005). The Structure of Foot-and-Mouth Disease Virus. In: Mahy, B.W. (eds) Foot-and-Mouth Disease Virus. Current Topics in Microbiology and Immunology, vol 288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27109-0_4

Download citation

Publish with us

Policies and ethics