Proton Channelling b-Type Cytochromes in Plant Plasma Membranes?

  • Sabine Lüthje
  • Michael Böttger
  • Olaf Döring
Part of the Progress in Botany book series (BOTANY, volume 66)


NADPH Oxidase Iron Uptake Flavin Adenine Dinucleotide Plant Plasma Membrane Ferric Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad M, Cashmore AR (1993) HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166CrossRefPubMedGoogle Scholar
  2. Ahmad M, Cashmore AR (1996) Seeing blue: the discovery of cryptochrome. Plant Mol Biol 30:851–861CrossRefPubMedGoogle Scholar
  3. Ahmad M, Heil M, Black RC, Giovani B, Galland P, Lardemer D (2002) Action spectrum for hypocotyl growth inhibition suggests dosage-dependent synergism among cryptochrome photoreceptors of Arabidopsis thaliana. Plant Physiol 129:774–785CrossRefPubMedGoogle Scholar
  4. Asada A, Kusakawa T, Orii H, Agata K, Watanabe K, Tsubaki M (2002) Planarian cytochrome b 561: conservation of a six transmembrane structure and localization along central and peripheral nervous system. J Biochem 131:175–183PubMedGoogle Scholar
  5. Asard H, Caubergs R (1990) LIAC activity in higher plants. In: Lenci F, Ghetti F, Colombetti G, Häder DP, Song PS (eds) Biophysics of photoreceptors and photomovement in microorganisms. NATO ASI Ser 211:181–189Google Scholar
  6. Asard H, Venken M, Caubergs R, de Greef JA (1989) b-type cytochromes in higher plant plasma membranes. Plant Physiol 90:1077–1083PubMedGoogle Scholar
  7. Asard H, Horemans N, Caubergs RJ (1992) Transmembrane electron transport in ascorbateloaded plasma membrane vesicles from higher plants involve a b-type cytochrome. FEBS Lett 306:143–146CrossRefPubMedGoogle Scholar
  8. Asard H, Horemans N, Mertens J, Caubergs RJ (1994) The plant plasma membrane b-type cytochrome: an overview. Belgien J Bot 127:171–183Google Scholar
  9. Asard H, Horemans N, Briggs WR, Caubergs RJ (1995a) Blue light perception by endogenous redox components of the plant plasma membrane. Photochem Photobiol 61:518–522CrossRefGoogle Scholar
  10. Asard H, Horemans N, Caubergs RJ (1995b) Involvement of ascorbic acid and a b-type cytochrome in plant plasma membrane redox reactions. Protoplasma 184:36–41CrossRefGoogle Scholar
  11. Asard H, Horemans N, Preger V, Trost P (1998) Plasma membrane b-type cytochromes. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 1–31Google Scholar
  12. Asard H, Terol-Alcayade J, Preger V, del Favero J, Verelst W, Sparla F, Pérez-Alonso M, Trost P (2000) Arabidopsis thaliana sequence analysis confirms the presence of cyt b-561 in plants: evidence for a novel protein family. Plant Physiol Biochem 38:905–912CrossRefGoogle Scholar
  13. Asard H, Kapila J, Verelst W, Bérczi A (2001) Higher-plant plasma membrane cytochrome b 561:a protein in search of a function. Protoplasma 217:77–93CrossRefPubMedGoogle Scholar
  14. Askerlund P, Larsson C, Widell S (1989) Cytochromes of plant plasma membranes. Characterization by absorbance difference spectrophotometry and redox titration. Physiol Plant 76:123–134CrossRefGoogle Scholar
  15. Askerlund P, Laurent P, Nakagawa H, Kadar JC (1991) NADH-ferricyanide reductase of leaf plasma membranes. Partial purification and immunological relation to potato tuber microsomal NADH-ferricyanide reductase and spinach leaf NADH-nitrate reductase. Plant Physiol 95:6–13PubMedGoogle Scholar
  16. Askwith C, Kaplan J (1998) Iron transport in yeast: the involvement of an iron reductase and oxidase. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 157–177Google Scholar
  17. Askwith C, Eide D, van Ho A, Bernhard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410CrossRefPubMedGoogle Scholar
  18. Babior B (1992) The respiratory burst oxidase. Adv Enzymol Relat Areas Mol Biol 65:49–95PubMedCrossRefGoogle Scholar
  19. Bagnaresi P, Thoiron S, Mansion M, Rossignol M, Pupillo P, Briat J-F (1999) Cloning and characterization of a maize cytochrome-b 5 reductase with Fe3+-chelate reduction capability. Biochem J 338:499–505CrossRefPubMedGoogle Scholar
  20. Barr R (1991) The possible role of redox-associated protons in growth of plants. J Bioenerg Biomembr 23:443–467CrossRefPubMedGoogle Scholar
  21. Barr R, Crane FL (1991) Modulation of plasma membrane redox reactions in plant cells. In: Crane FL, Morre DJ, Low HE (eds) Oxidoreduction at the plasma membrane: relation to growth and transport, vol 2. Plants. CRC Press, Boca Raton, pp 237–279Google Scholar
  22. Barr R, Sandelius AS, Crane FL, Morré DJ (1986) Redox reactions of tonoplast and plasma membranes isolated from soybean hypocotyls by free-flow electrop horesis. Biochim Biophys Acta 852:254–261PubMedCrossRefGoogle Scholar
  23. Barrett M, Maxson JM (1991) Naphthalic anhydride induces imazethapyr metabolism and cytochrome P-450 activity in maize. Z Naturforsch 46c:897–900Google Scholar
  24. Bashtovyy D, Bérczi A, Asard H, Páli T (2003) Structure prediction for the di-heme cytochrome b 561 protein family. Protoplasma 221:31–40CrossRefPubMedGoogle Scholar
  25. Benveniste I, Gabriac B, Durst F (1986) Purification and characterization of the NADPH-cytochrome P-450 (cytochrome c) reductase from higher-plant microsomal fraction. Biochem J 235:365–373PubMedGoogle Scholar
  26. Bérczi A, Møller IM (1998a) NADH-monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membrane. Plant Physiol 116:1029–1036CrossRefGoogle Scholar
  27. Bérczi A, Møller IM (1998b) Characterization and solubilization of residual redox activity in salt-washed and detergent-treated plasma membrane vesicles from spinach leaves. Protoplasma 205:59–65CrossRefGoogle Scholar
  28. Bérczi A, Møller IM (2000) Redox enzymes in the plant plasma membrane and their possible roles. Plant Cell Environ 23:1287–1302CrossRefGoogle Scholar
  29. Bérczi A, Fredlund KM, Moller IM (1995) Purification and characterization of an NADHhexacyanoferrate(III) reductase from spinach leaf plasma membrane. Arch Biochem Biophys 320:65–72PubMedCrossRefGoogle Scholar
  30. Bérczi A, Lüthje S, Asard H (2001) b-Type cytochromes in plasma membranes of Phaseolus vulgaris hypocotyls, Arabidopsis thaliana leaves, and Zea mays roots. Protoplasma 217:50–55PubMedCrossRefGoogle Scholar
  31. Bérczi A, Caubergs RJ, Asard H (2003) Partial purification and characterization of an ascorbate-reducible b-type cytochrome from the plasma membrane of Arabidopsis thaliana leaves. Protoplasma 221:47–56PubMedCrossRefGoogle Scholar
  32. Berry EA, Trumpower BL (1985) Pathways of electrons and protons through the cytochrome bc1 complex of the mitochondrial respiratory chain. In: Lenaz G (ed) Coenzyme Q. Wiley, New York, pp 365–389Google Scholar
  33. Biberstine-Kinkade KJ, DeLeo FR, Epstein RI, LeRoy BA, Nauseef WM, Dinauer MC (2001) Heme-ligating histidines in flavocytochrome b558. Identification of specific histidines in gp91phox. J Biol Chem 276:31105–31112CrossRefPubMedGoogle Scholar
  34. Bienfait HF (1985) Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr 17:73–83CrossRefPubMedGoogle Scholar
  35. Black SD (1992) Membrane topology of the mammalian P450 cytochromes. Fed Am Soc Exp Biol J 6:680–685Google Scholar
  36. Bohn M, Heinz E, Lüthje S (2001) Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots. Arch Biochem Biophys 387:35–40CrossRefPubMedGoogle Scholar
  37. Borgeson CE, Bowman BJ (1985) Blue light-reducible cytochromes in membrane fractions from Neurospora crassa. Plant Physiol 78:433–437PubMedGoogle Scholar
  38. Böttger M, Bigdon M, Soll H-J (1985) Proton translocation in corn coleoptiles: ATPase or redox chain? Planta 163:376–380CrossRefGoogle Scholar
  39. Böttger M, Hilgendorf F (1988) Hormone action on transmembrane electron and H+ transport. Plant Physiol 86:1038–1043PubMedGoogle Scholar
  40. Bown AW, Crawford LA (1988) Evidence that H+ efflux stimulated by redox activity is independent of plasma membrane ATPase activity. Physiol Plant 73:170–174CrossRefGoogle Scholar
  41. Brain RD, Briggs WR (1977) Light-induced cytochrome reduction in Neurospora crassa membrane fractions. In: Castellani A (ed) Proc Int Congr on Research in Photobiology. Plenum Press, New York, pp 539–544Google Scholar
  42. Buckhout TJ, Luster DG (1991) Pyridine nucleotide-dependent reductases of the plant plasma membrane. In: Crane FL, Löw H, Morré DJ (eds) Oxidoreduction at the plasma membrane: relation to growth and transport, vol 2. Plants. CRC Press, Boca Raton, pp 61–84Google Scholar
  43. Bunkelmann J, Trelease RN (1996) Ascorbate peroxidase. A prominent membrane protein in oilseed glyoxysomes. Plant Physiol 110:589–598CrossRefPubMedGoogle Scholar
  44. Cakmak I, van de Wetering DAM, Marschner H, Bienfait HF (1987) Involvement of superoxide radical in extracellular ferric reduction by iron-deficient bean roots. Plant Physiol 85:310–314PubMedGoogle Scholar
  45. Caubergs RJ, Goldsmith MHM, Briggs WR (1978) Effects of inhibitors on light-induced absorbance changes in corn membrane fractions. Car Inst Wash Yearb 77:356–357Google Scholar
  46. Caubergs RJ, Widell S, Larsson C, de Greef JA (1983) Comparison of two methods for the preparation of a membrane fraction of cauliflower inflorescences containing a blue light reducible b-type cytochrome. Physiol Plant 57:291–295CrossRefGoogle Scholar
  47. Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas A, Liscum E, Briggs WR (1998) Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282:1698–1701CrossRefPubMedGoogle Scholar
  48. Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA 96:8779–8783CrossRefPubMedGoogle Scholar
  49. Connolly EL, Guerinot ML (1998) Reduction and uptake of iron in plants. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 179–192Google Scholar
  50. Connolly EL, Campbell NH, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiol 133:1102–1110CrossRefPubMedGoogle Scholar
  51. Crane FL, Roberts H, Linnane AW, Löw H (1982) Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr 14:191–205PubMedCrossRefGoogle Scholar
  52. Crane FL, Sun IL, Barr R, Löw H (1991) Electron and proton transport across the plasma membrane. J Bioenerg Biomembr 23:773–803CrossRefPubMedGoogle Scholar
  53. Cross AR, Jones OTG, Harper AM, Segal WA (1981) Oxidation-reduction properties of the cytochrome b found in the plasma-membrane fraction of human neutrophils. Apossible oxidase in the respiratory burst. Biochem J 194:599–606PubMedGoogle Scholar
  54. Dagher MC, Fuchs A, Bourmeyster N, Jouan A, Vignais PV (1995) Small G proteins and the neutrophil NADPH oxidase. Biochimie 77:651–660CrossRefPubMedGoogle Scholar
  55. Dancis A, Klausner RD, Hinnebusch AG, Barriocanal JG (1990) Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10:2294–2301PubMedGoogle Scholar
  56. Dancis A, Roman DG, Andersen GJ, Hinnenbusch AG, Klaussner RD (1992) Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci USA 89:3869–3873PubMedCrossRefGoogle Scholar
  57. Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402CrossRefPubMedGoogle Scholar
  58. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833CrossRefPubMedGoogle Scholar
  59. Dangl JL, Dietrich RA, Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8:1793–1807CrossRefPubMedGoogle Scholar
  60. DeCoursey TE (2003) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83(2):475–579PubMedGoogle Scholar
  61. DeCoursey TE, Cherny VV, Morgan D, Katz BZ, Dinauer MC (2001) The gp91phox component of NADPH oxidase is not the voltage-gated proton channel in phagocytes, but it helps. J Biol Chem 276:36063–36066CrossRefPubMedGoogle Scholar
  62. Desikan R, Burnett EC, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J Exp Bot 49:1767–1771CrossRefGoogle Scholar
  63. Deskian R, Hanncock JT, Coffey MJ, Neill SJ (1996) Generation of active oxygen in elicited cells of Arabidopsis thaliana is mediated by a NADPH oxidase-like enzyme. FEBS Lett 382:213–217CrossRefGoogle Scholar
  64. De Silva DM, Askwith CC, Eide D, Kaplan J (1995) The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem 270:1098–1101PubMedCrossRefGoogle Scholar
  65. Dix DR, Bridgham JT, Broderius MA, Byersdorfer CA, Eide DJ (1994) The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269:26092–26099PubMedGoogle Scholar
  66. Dixon RA, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097CrossRefPubMedGoogle Scholar
  67. Donaldson RP, Luster DG (1991) Multiple forms of plant cytochromes P-450. Plant Physiol 96:669–674PubMedGoogle Scholar
  68. Döring O, Lüthje S (1996) Molecular components and biochemistry of electron transport in plant plasma membranes (review). Mol Membr Biol 13:127–142PubMedGoogle Scholar
  69. Döring O, Lüthje S, Hilgendorf F, Böttger M (1990) Membrane depolarization by hexacyanoferrate (III), hexabromoiridate (IV) and hexachloroiridate (IV). J Exp Bot 43:1055–1061CrossRefGoogle Scholar
  70. Döring O, Lüthje S, Böttger M (1992) Modification of the activity of the plasma membrane redox system of Zea mays L. roots by vitamin K3 and dicumarol. J Exp Bot 43:175–181CrossRefGoogle Scholar
  71. Döring O, Böttger M, Lüthje S (1998) The constitutive electron transport system in plant plasma membranes: a role in defense against oxidative stress in the apoplast and within the plasma membrane? A hypothesis. In: Noga G, Schmitz M (eds) Antioxidants in higher plants: biosynthesis, characteristics, actions and specific functions in stress defense. Shaker, Aachen, pp 19–30Google Scholar
  72. Doussier J, Buzenet G, Vignais PV (1995) Photoaffinity labeling and photoinactivation of the O2 --generating oxidase of neutrophils by an azido derivative of FAD. Biochem 34:1760–1770CrossRefGoogle Scholar
  73. Drexler H, Spiekermann P, Meyer A, Domergue F, Zank T, Sperling P, Abbadi A, Heinz E (2003) Metabolic engineering of fatty acids for breeding of new oil seed crops: strategies, problems and first results. J Plant Physiol 160(7):779–802CrossRefPubMedGoogle Scholar
  74. Durst F, Beneviste I, Salaün JP, Werck-Reichart D (1992) Function, mechanism and regulation of cytochrome P-450 enzymes in plants. Biochem Soc Trans 20:353–357PubMedGoogle Scholar
  75. Dwyer SC, Legrende L, Low PS, Leto TL (1996) Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochim Biophys Acta 1289:231–237PubMedGoogle Scholar
  76. Eide D, Davis-Kaplan S, Jordan I, Sipes D, Kaplan J (1992) Regulation of iron uptake in Saccharomyces cerevisiae. J Biol Chem 267:20774–20781PubMedGoogle Scholar
  77. Elzenga JTM, Prins HBA (1989) Light-induced polar pH changes in leaves of Elodea canadensis. I. Effects of carbon concentration and light intensity. Plant Physiol 91:68–72PubMedGoogle Scholar
  78. Finegold AA, Shatwell KP, Segal AW, Klausner RD, Dancis A (1996) Intramembrane bisheme motif for transmembrane electron transport conserved in a yeast reductase and the human NADPH oxidase. J Biol Chem 271:31021–3102PubMedCrossRefGoogle Scholar
  79. Flatmark T, Terland O (1971) Cytochrome b 561 of the bovine adrenal chromaffin granules. A high potential b-type cytochrome. Biochim Biophys Acta 253:487–491PubMedCrossRefGoogle Scholar
  80. Funk C, Croteau R (1993) Induction and characterization of a cytochrome-P-450-dependent camphor hydroxylase in tissue cultures of common sage (Salvia officinalis). Plant Physiol 101(4):1231–1237PubMedGoogle Scholar
  81. Galland P, Senger H (1991) Flavins as possible blue light photoreceptors. In: Holmes MG (ed) Photoreceptor evolution and function. Academic Press, London, pp 65–124Google Scholar
  82. Galland P, Tölle N (2003) Light-induced fluorescence changes in Phycomyces: evidence for blue light-receptor associated flavo-semiquinones. Planta 217:971–982CrossRefPubMedGoogle Scholar
  83. Georgatsou E, Alexandraki D (1994) Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14:3065–3073PubMedGoogle Scholar
  84. Gerardy R, Zenk MH (1993) Formation of salutaridine from (R)-reticuline by a membranebound cytochrome-P-450 enzyme from Papaver somniferum. Phytochemistry 32:79–86CrossRefGoogle Scholar
  85. Giannini JL, Briskin DP (1988) Pyridine nucleotide oxidation by a plasma membrane fraction from red beet (Beta vulgaris L.) storage tissue. Arch Biochem Biophys 260:653–660CrossRefPubMedGoogle Scholar
  86. Griesen D, Su D, Bérczi A, Asard H (2004) Localization of an ascorbate-reducible cytochrome b 561 in the plant tonoplast. Plant Physiol 134:726–734CrossRefPubMedGoogle Scholar
  87. Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones DJ (1996) RbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522CrossRefPubMedGoogle Scholar
  88. Hancock JT, Deskian R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 29:345–350CrossRefPubMedGoogle Scholar
  89. Hansikova H, Frei E, Anzenbacher P, Stiborova M (1994) Isolation of plant cytochrome P-450 and NADPH-cytochrome P-450 reductase from tulip bulbs (Tulipa fosteriana L.) oxidizing xenobiotics. General Physiol Biophys 13:149–169Google Scholar
  90. Hassett R, Kosman DJ (1995) Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem 270:128–134PubMedCrossRefGoogle Scholar
  91. Hassidim M, Rubinstein B, Lerner HR, Reinhold L (1987) Generation of a membrane potential by electron transport in plasmalemma-enriched vesicles of cotton and radish. Plant Physiol 85:872–875PubMedGoogle Scholar
  92. Henderson LM (1998) Role of histidines identified by mutagenesis in the NADPH oxidase associated H+ channel. J Biol Chem 273:33216–33223CrossRefPubMedGoogle Scholar
  93. Henderson LM (2001) NADPH oxidase subunit gp91phox: a proton pathway. Protoplasma 217:37–42CrossRefPubMedGoogle Scholar
  94. Henderson LM, Chappell JB (1996) NADPH oxidase of neutrophils. Biochim Biophys Acta 1273:87–107PubMedCrossRefGoogle Scholar
  95. Henderson LM, Thomas S, Banting G, Chappell B (1997) The arachidonic-activatable NADPH oxidase-associated H+ channel is contained with the multi-membrane-spanning N-terminal region of gp91phox. Biochem J 325:701–705PubMedGoogle Scholar
  96. Hendrickson WA, Karle J (1973) Carp muscle calcium-binding protein. J Biol Chem 248:3327–3334PubMedGoogle Scholar
  97. Hendry GAF, Houghton JD, Jones OTG (1981) The cytochromes in microsomal fractions of germinating mung beans. Biochem J 194:743–751PubMedGoogle Scholar
  98. Herbik A, Bölling C, Buckhout TJ (2002a) The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii. Plant Physiol 130:2039–2048CrossRefPubMedGoogle Scholar
  99. Herbik A, Haebel A, Buckhout TJ (2002b) Is a ferroxidase involved in the high-affinity iron uptake in Chlamydomonas reinhardtii? Plant Soil 241:1–9CrossRefGoogle Scholar
  100. Hilgendorf F, Böttger M (1993) Influence of temperature on proton secretion and hexacy anoferrate (III) reduction of Zea mays L. roots. Plant Physiol 101:1349–1353PubMedGoogle Scholar
  101. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42:462–468CrossRefPubMedGoogle Scholar
  102. Horemans N, Asard H, Caubergs RJ (1994) The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants. Plant Physiol 104:1455–1458PubMedGoogle Scholar
  103. Horemans N, Briggs WR, Caubergs RJ (1995) Blue light perception by endogenous redox components of the plant plasma membrane. Photochem Photobiol 61:518–522CrossRefGoogle Scholar
  104. Horemans N, Foyer C, Asard H (2000a) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:63–66CrossRefGoogle Scholar
  105. Horemans N, Foyer C, Potters G, Asard H (2000b) Ascorbate function and associated transport systems. Plant Physiol Biochem 38:1–11CrossRefGoogle Scholar
  106. Iseki M, Matsunaga S, Muraka A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051CrossRefPubMedGoogle Scholar
  107. Ishimamura A, Yamazaki I (1977) The carbon monooxide-binding hemoprotein reducible by hydrogen peroxide in microsomal fractions of pea seeds. J Biol Chem 252:199–204Google Scholar
  108. Ito A, Sato R (1968) Purification by means of detergents and properties of cytochrome b 5 from liver microsomes. Eur J Biochem 243:4922–4923Google Scholar
  109. Ivankina NG, Novak VA (1980) H+ transport across the plasmalemma. H+-ATPase or redox chain? In: Lucas RM, Spanswick WJ, Dainty J (eds) Plant membrane transport, current conceptual issues. Elsevier, Amsterdam, pp 503–504Google Scholar
  110. Iyanagi T (1990) On the mechanism of one-electron reduction of quinones by microsomal flavin enzymes: the kinetic analysis between cytochrome b 5 and menadione. Free Rad Res Commun 8:259–268CrossRefGoogle Scholar
  111. Jaakola L, Maatta-Riihinen K, Karenlampi S, Hohtola A (2003) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728PubMedGoogle Scholar
  112. Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856PubMedCrossRefGoogle Scholar
  113. Jesaitis AJ, Heners PR, Hertel R, Briggs WR (1977) Characterization of a membrane fraction containing a b-type cytochrome. Plant Physiol 59:941–947PubMedGoogle Scholar
  114. Jespersen HM, Kjærsgård IVH, Østergaard L, Welinder KG (1997) From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochem J 326:305–310PubMedGoogle Scholar
  115. Joliot P, Joliot A (1986) Mechanism of proton pumping in the cytochrome b/f complex. Photosynth Res 9:113–124CrossRefGoogle Scholar
  116. Jollie DR, Sligar SG, Schuler M (1987) Purification and characterization of microsomal cytochrome b 5 and NADH cytochrome b 5 reductase from Pisum sativum. Plant Physiol 85:457–462PubMedGoogle Scholar
  117. Kawano T (2003) Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21:829–837PubMedGoogle Scholar
  118. Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266CrossRefPubMedGoogle Scholar
  119. Kelley PM, Njus D (1986) Cytochrome b 561 spectral changes associated with electron transfer in cromaffin-vesicle ghosts. J Biol Chem 261:6429–6432PubMedGoogle Scholar
  120. Kieffer F, Simon-Plas F, Maume BF, Blein JP (1997) Tobacco cells contain a protein, immunologically related to the neutrophil small G protein Rac2 and involved in elicitorinduced oxidative burst. FEBS Lett 403:149–153CrossRefPubMedGoogle Scholar
  121. Kimball RA, Saier MH Jr (2002) Voltage-gated H+ channels associated with human phagocyte superoxide-generating NADPH oxidase: sequence comparison, structural predictions, and phylogenetic analysis. Mol Membr Biol 19:137–147PubMedCrossRefGoogle Scholar
  122. Kjellbom P, Larsson C, Askerlund P, Schelin C, Widell S (1985) Cytochrome P-450/420 in plant plasma membranes: a possible component of the blue-light-reducible flavoprotein-cytochrome complex. Photochem Photobiol 42:779–783CrossRefGoogle Scholar
  123. Klebanoff SJ (1992) Oxygen metabolites from phagocytes. In: Gallin JG, Goldstein IM, Snydman R (eds) Inflammation: basic principles and clinical correlates, 2nd edn. Raven Press, New York, pp 541–588Google Scholar
  124. Klobus G, Buczek J (1995) The role of plasma membrane oxidoreductase activity in proton transport. J Plant Physiol 146:103–107Google Scholar
  125. Knöpfel M, Solioz M (2002) Characterization of a cytochrome b 558 ferric/cupric reductase from rabbit duodenal brush border membranes. Biochem Biophys Res Commun 291:220–225PubMedCrossRefGoogle Scholar
  126. Krüger S (1993) Untersuchungen zur Energetisierung plasmalemmagebundener Redox prozesse. PhD Thesis, University of Hamburg, GermanyGoogle Scholar
  127. Kurkova EB, Verhovskaya ML (1984) Redox components in the plasmalemma of plant cells. Soviet Plant Physiol 31:386–392Google Scholar
  128. Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275CrossRefPubMedGoogle Scholar
  129. Lambeth JD (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9:11–17CrossRefPubMedGoogle Scholar
  130. Lance C, Bonner WD Jr (1968) The respiratory chain components of higher plant mitochondria. Plant Physiol 43:756–766PubMedGoogle Scholar
  131. Leong TY, Vierstra RD, Briggs WR (1981) A blue light-sensitive cytochrome-flavin complex from corn coleoptiles. Further characterization. Photochem Photobiol 34:697–703Google Scholar
  132. Lesot A, Benveniste I, Hasenfratz MP, Durst F (1990) Induction of NADPH-cytochrome P-450 (c) reductase in wounded tissues from Helianthus tuberosus tubers. Plant Cell Physiol 31(8):1177–1182Google Scholar
  133. Lesuisse E, Horion B, Labbe P, Hilger F (1991) The plasma membrane ferri reductase activity of Saccharomyces cerevisiae is partially controlled by cyclic AMP. Biochem J 280:545–548PubMedGoogle Scholar
  134. Liu Q, Markham KR, Pare PW, Dixon RA, Mabry TJ (1993) Flavonoids from elicitor-treated cell suspension cultures of Cephalocereus senilis. Phytochemistry 32:925–928CrossRefGoogle Scholar
  135. Loeper J, Louerat-Oriou B, Duport C, Pompon D (1998) Yeast expressed cytochrome P450 2D6 (CYP2D6) exposed on the external face of plasma membrane is functionally competent. Mol Pharmacol 54:8–13PubMedGoogle Scholar
  136. Löppert H (1981) Energy coupling for membrane hyperpolarization in Lemna: evidence against an ATP-fueled electrogenic pump as the exclusive mechanism. Planta 151:293–297CrossRefGoogle Scholar
  137. Löppert H (1983) Energy coupling for membrane hyperpolarization in Lemna: respiration rate, ATP level and membrane potential at low oxygen concentrations. Planta 159:329–335CrossRefGoogle Scholar
  138. Lorenz A, Kaldenhoff R, Hertel R (2003) A major integral protein of the plant plasma membrane binds flavin. Protoplasma 221:19–30CrossRefPubMedGoogle Scholar
  139. Lundegårdh H (1945) Absorption, transport and exudation of inorganic ions by roots. Arkiv Bot 32A(12):1–139Google Scholar
  140. Lundegardh H (1955) Mechanism of absorption, transport, accumulation, and secretion of ions. Annu Rev Plant Physiol 6:1–24CrossRefGoogle Scholar
  141. Lüthen H, Böttger M (1988) Hexachloroiridate IV as an electron acceptor for a plasmalemma redox system in maize roots. Plant Physiol 86:1044–1047PubMedGoogle Scholar
  142. Lüthje S, Döring O, Heuer S, Lüthen H, Böttger M (1997) Oxidoreductases in plant plasma membranes. Biochim Biophys Acta 1331:81–102PubMedGoogle Scholar
  143. Lüthje S, van Gestelen P, Córdoba-Pedregosa M-C, González-Reyes JA, Asard H, Villalba JM, Böttger M (1998) Quinones in plant plasma membranes — a missing link? Protoplasma 205:43–51CrossRefGoogle Scholar
  144. Lüthje S, Böttger M, Döring O (2000) Are plants stacked neutrophiles? Pathogen-induced oxidative burst in plants and mammals in comparison. Progress in Botany, vol 61. Springer, Berlin Heidelberg New York, pp 187–222Google Scholar
  145. Mankelow TJ, Henderson LM (2003) Proton conduction through full-length gp91phox requires histidin 115. Protoplasma 221:101–108CrossRefPubMedGoogle Scholar
  146. Marabini L, Radice S, Cipelletti B, Chiesara E (1994) Different amounts of cytochrome P-450 dependent monooxygenases in tulip bulbs, pea seedlings and maize endosperm cells. Plant Sci 99(2):135–140CrossRefGoogle Scholar
  147. Martin EM, Morton RK (1955) Cytochrome b 3 of microsomes from plant tissues. Nature 176:113–114PubMedCrossRefGoogle Scholar
  148. Martin EM, Morton RK (1957) Heam pigments of cytoplasmic particles from non-photosynthetic plant tissues. Biochem J 65:404–413PubMedGoogle Scholar
  149. McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291:1755–1759CrossRefPubMedGoogle Scholar
  150. McKie AT, Latunde-Dada GO, Miret S, McGregor JA, Anderson GJ, Vulpe CD, Wrigglesworth JM, Simpson RJ (2002) Molecular evidence for the role of a ferric reductase in iron transport. Biochem Soc Trans 30:722–724PubMedCrossRefGoogle Scholar
  151. Meier B (1998) Reactive oxygen intermediates involved in cellular regulation. Protoplasma 217:101–116CrossRefGoogle Scholar
  152. Michel H (1998) The mechanism of proton pumping by cytochrome c oxidase. Proc Natl Acad Sci USA 95(22):12819–12824CrossRefPubMedGoogle Scholar
  153. Mika A, Lüthje S (2003a) Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiol 132:1489–1498CrossRefPubMedGoogle Scholar
  154. Mika A, Lüthje S (2003b) DPI-sensitive NAD(P)H oxidase activities of plasma membrane bound peroxidases isolated from corn roots (Zea mays L.). Free Rad Res 37 (Suppl 2):41Google Scholar
  155. Mika A, Minibayeva F, Beckett R, Lüthje S (2004) Possible functions of extracellular peroxidases in stress-induced generation and detoxification of active oxygen species. In: Ros Barceló A, Sottomayor M (eds) Plant peroxidases and phytochemistry, phytochemistry reviews. Kluwer, Dordrecht, in pressGoogle Scholar
  156. Morel F, Doussiére J, Vignais PV (1991) The superoxide-generating oxidase of phagocytic cells. Eur J Biochem 201:523–546CrossRefPubMedGoogle Scholar
  157. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355(6363):796–802CrossRefPubMedGoogle Scholar
  158. Mougin C, Polge N, Scalla R, Cabanne F (1991) Interactions of various agrochemicals with cytochrome P-450-dependent monooxygenases of wheat cells. Pest Biochem Physiol 40:1–11CrossRefGoogle Scholar
  159. Nanda A, Grinstein S, Curnutte JT (1993) Abnormal activation of H+ conductance in NADPH oxidase-defective neutrophils. Proc Natl Acad Sci USA 90:760–764PubMedCrossRefGoogle Scholar
  160. Nega E, Grunwaldt G (1997) Evidence for and characterization of cytochrome P-450 in Neurospora crassa. J Basic Microbiol 37(2):139–145PubMedCrossRefGoogle Scholar
  161. Neufeld E, Bown AW (1987) A plasma membrane redox system and proton transport in isolated mesophyll cells. Plant Physiol 83:895–899PubMedGoogle Scholar
  162. Njus D, Kelley PM (1993) The secretory-vesicle ascorbate-regenerating system: a chain of concerted H+/e-transfer reactions. Biochim Biophys Acta 1144:235–248PubMedCrossRefGoogle Scholar
  163. Njus D, Knoth J, Cook C, Kelley PM (1983) Electron transfer across the chromaffin granule membrane. Biol Chem 258:27–30Google Scholar
  164. Njus D, Kelley PM, Harnadek GJ, Pacquing YV (1987) Mechanism of ascorbic acid regeneration mediated by cytochrome b 561. Ann N Y Acad Sci 493:108–119PubMedCrossRefGoogle Scholar
  165. Njus D, Wigle M, Kelley PM, Kipp BH, Schlegel HB (2001) Mechanism of ascorbic acid oxidation by cytochrome b 561. Biochemistry 40:11905–11911CrossRefPubMedGoogle Scholar
  166. Novak VA, Ivankina NG (1986) Cellular level of ATP, transport of potassium, and electric characteristics of the Elodea plasmalemma in the presence of ferricyanide. Dokl Akad Nauk SSSR 286:498–501Google Scholar
  167. Novak VA, Miklashevich AI (1986) Effect of ferricyanide on the metabolic activity and ion transport of Chlorella vulgaris. Zitologia 28:939–947Google Scholar
  168. Novak VA, Ivankina NG, Morokova EA, Miclashevich AI (1988) The link between the electrogenic and redox functions of the plasmalemma and the energy metabolism of the cell. Physiol Plant 73:165–169CrossRefGoogle Scholar
  169. Okuyama E, Yamamoto R, Ichikawa Y, Tsubaki M (1998) Structural basis for the electron transfer across the chromaffin vesicle membranes catalyzed by cytochrome b 561: analyses of cDNA nucleotide sequences and visible absorption spectra. Biochem Biophys Acta 1383:269–278PubMedGoogle Scholar
  170. Ozols J (1989) Structure of cytochrome b 5 and its topology in the microsomal membrane. Biochim Biophys Acta 997:121–130PubMedGoogle Scholar
  171. Persan MW, Wang J, Schuler MA (2001) Characterization of maize cytochrome P450 monooxygenases induced in response to safeners and bacterial pathogens. Plant Physiol 125:1126–1138CrossRefGoogle Scholar
  172. Peters NK, Frost JW, Long S (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nudolation genes. Science 233:977–980PubMedCrossRefGoogle Scholar
  173. Pierre JL, Fontecave M (1999) Iron and activated oxygen species in biology: the basic chemistry. BioMetals 12:195–199CrossRefPubMedGoogle Scholar
  174. Qiu Z-S, Rubinstein B, Stern AI (1985) Evidence for electron transport across the plasma membrane of Zea mays root cells. Planta 165:383–391CrossRefGoogle Scholar
  175. Ramirez JR, Gallego GG, Serrano R (1984) Electron transfer constituents in plasma membrane fractions of Avena sativa and Saccharomyces cerevisiae. Plant Sci Lett 34:103–110CrossRefGoogle Scholar
  176. Ravel P, Lederer F (1993) Affinity-labeling of an NADPH-binding site on the heavy subunit of flavocytochrome b 558 in particulate NADPH oxidase from activated human neutrophils. Biochem Biophys Res Commun 196:543–552CrossRefPubMedGoogle Scholar
  177. Rich PR (1984) Electron and proton transfers through quinones and cytochrome bc complexes. Biochem Biophys Acta 768:53–79PubMedGoogle Scholar
  178. Rich PR, Bendall DS (1975) Cytochrome components of plant microsomes. Eur J Biochem 55:333–341CrossRefPubMedGoogle Scholar
  179. Rich PR, Cammack R, Bendall DS (1971) Electron paramagnetic resonance studies of cytochrome P-450 in plant microsomes. Eur J Biochem 59:281–286CrossRefGoogle Scholar
  180. Robinson NC, Tanford C (1975) The binding of deoxycholate, triton X-100, sodium dodecyl sulfate, and phosphatidylcholine vesicles to cytochrome b5. Biochemistry 14(2):369–377CrossRefPubMedGoogle Scholar
  181. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697CrossRefPubMedGoogle Scholar
  182. Rodgers MW, Zimmerlin A, Werck-Reichart D, Bolwell GP (1993) Microsomally associated heme proteins from French bean: characterization of the cytochrome P450 cinnamate-4-hydroxylase and two peroxidases. Arch Biochem Biophys 304:74–80CrossRefPubMedGoogle Scholar
  183. Roman DG, Dancis A, Anderson GJ, Klausner RD (1993) The fission yeast ferric reductase gene frp1+ is required for ferric uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol 13:4342–4350PubMedGoogle Scholar
  184. Römheld V (1987) Existence of two different strategies for the acquisition of iron in higher plants. In: Winkelmann G, van der Helm D, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH, Weinheim, pp 353–374Google Scholar
  185. Ros Barcelü A (1997) Lignification in plant cell walls. Int Rev Cytol 176:87–132CrossRefGoogle Scholar
  186. Rossi F (1986) The O2 - forming NADPH oxidase of the phagocytes: nature, mechanism of activation and function. Biochim Biophys Acta 853:65–89PubMedGoogle Scholar
  187. Rubinstein B (1994) The action of ascorbate in vesicular systems. J Bioenerg Biomembr 26:385–392CrossRefPubMedGoogle Scholar
  188. Rubinstein B, Stern AI (1986) Relationship of transplasmalemma redox activity to proton and solute transport by roots of Zea mays. Plant Physiol 80:805–811PubMedGoogle Scholar
  189. Rubinstein B, Stern AI (1991a) The role of plasma membrane redox activity in light effects in plants. J Bioenerg Biomembr 23:393–408CrossRefPubMedGoogle Scholar
  190. Rubinstein B, Stern AI (1991b) Proton release and plasmalemma redox in plants. In: Crane FL, Morre DJ, Low HE (eds) Oxidoreduction at the plasma membrane: relation to growth and transport, vol 2. Plants. CRC Press, Boca Raton, pp 167–187Google Scholar
  191. Scagliarini S, Rotino I, Bäurle I, Asard H, Pupillo P, Trost P (1998) Initial purification study of the cytochrome b 561 of bean hypocotyl plasma membrane. Protoplasma 205:66–73CrossRefGoogle Scholar
  192. Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26CrossRefGoogle Scholar
  193. Segal AW (1995) The NADPH oxidase of phagocytic cells is an electron pump that alkalinises the phagocytic vacuole. Protoplasma 184:86–104CrossRefGoogle Scholar
  194. Segal AW, West I, Wientjes F, Nugent JHA, Haley B, Garcia RC, Rosen H, Scarce G (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284:781–788PubMedGoogle Scholar
  195. Segal AW, Wientjes F, Stockley R, Dekker LV (1998) Components of the NADPH oxidase of phagocytic cells and their abnormality in the molecular pathology of chronic granulomatous disease (CGD). In: Asard H, Bérczi A, Caubergs R (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 69–101Google Scholar
  196. Segal AW, Wientjes F, Stockley RW, Dekker LV (1999) Components and organization of the NADPH oxidase of phagocytic cells: its role in microbial killing and in the molecular pathology of chronic granulomatous disease. Adv Cell Mol Biol Membr Org 5:441–483CrossRefGoogle Scholar
  197. Serrano A, Córdoba F, Gonzáles-Reyes JA, Navas P, Villalba JM (1994) Purification and characterization of two distinct NAD(P)H dehydrogenases from onion (Allium cepa L.) root plasma membrane. Plant Physiol 106:87–96PubMedGoogle Scholar
  198. Shatwell KP, Dancis A, Cross AR, Klausner RD, Segal AW (1996) The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271:14240–14244CrossRefPubMedGoogle Scholar
  199. Shichi H, Kasinsky HE, Hackett DP (1963) Studies on the b-type cytochromes from mung bean seedlings. IV. Purification and properties of cytochrome b 3 (b-559). J Biol Chem 238:1162–1166PubMedGoogle Scholar
  200. Shirley BW (1996) Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway. Trends Plant Sci 1:377–382CrossRefGoogle Scholar
  201. Short TW, Briggs WR (1990) Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L.) seedlings. Plant Physiol 92:179–185PubMedGoogle Scholar
  202. Shoun H, Suyama W, Kim D (1991) Unique nitrate/nitrite-inducible cytochrome P-450 in Fusarium oxysporum and related fungal species. Agric Biol Chem 55:593–596Google Scholar
  203. Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Plant Mol Biol 41:225–253CrossRefGoogle Scholar
  204. Sparla F, Bagnaresi P, Scagliarini S, Trost P (1997) NADH:Fe(III)-chelate reductase of maize roots is an active cytochrome b(5) reductase. FEBS Lett 414:571–575CrossRefPubMedGoogle Scholar
  205. Spatz L, Strittmatter P (1971) A form of cytochrome b 5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci USA 68:1042–1046PubMedCrossRefGoogle Scholar
  206. Sperling P, Heinz E (2001) Desaturases fused to their electron donor. Eur J Lipid Technol 103:158–180CrossRefGoogle Scholar
  207. Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukotiens Essential Fatty Acids 68:73–95CrossRefGoogle Scholar
  208. Stadler R, Zenk MH (1993) The purification and characterization of a unique cytochrome P-450 enzyme from Berberis-Stolonifera plant cell cultures. J Biol Chem 268(2):823–831PubMedGoogle Scholar
  209. Stöhr C (1998) Plasma membrane-bound nitrate reductase in algae and higher plants. In: Asard H, Bérczi A, Caubergs RJ (eds) Plasma membrane redox systems and their role in biological stress and disease. Kluwer, Dordrecht, pp 103–119Google Scholar
  210. Strittmatter P, Ozols J (1966) The restricted tryptic cleavage of cytochrome b5. J Biol Chem 241(20):4787–4792PubMedGoogle Scholar
  211. Sugimura Y, Yoshizaki F, Katagiri J, Horiuchi C (1980) Studies on algal cytochromes. I. Purification and properties of cytochrome b-561 from Enteromorpha prolifera. J Biochem 87:541–547PubMedGoogle Scholar
  212. Sze H (1985) H+-translocating ATPases: advances using membrane vesicles. Annu Rev Plant Physiol 36:175–208CrossRefGoogle Scholar
  213. Tenhaken R, Rübel C (1998) Cloning of putative subunits of the soybean plasma membrane NADPH-oxidase involved in the oxidative burst by antibody expression screening. Protoplasma 205:21–28CrossRefGoogle Scholar
  214. Tenhaken R, Thulke O (1996) Cloning of an enzyme that synthesizes a key nucleotide-sugar precursor of hemicellulose biosynthesis from soybean: UDP-glucose dehydrogenase. Plant Physiol 112:1127–1134CrossRefPubMedGoogle Scholar
  215. Tenhaken R, Levine A, Brisson LF, Dixon RA, Lamb C (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92:4158–4163PubMedCrossRefGoogle Scholar
  216. Thimm O, Essigmann B, Kloska S, Altmann T, Buckhout TJ (2001) Response of Arabidopsis to iron deficiency stress as revealed by microarray analyses. Plant Physiol 127:1030–1043CrossRefPubMedGoogle Scholar
  217. Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370CrossRefPubMedGoogle Scholar
  218. Trost P, Bérczi A, Sparla F, Sponza G, Marzadori B, Asard H, Pupillo P (2000) Purification of cytochrome b-561 from bean hypocotyls plasma membrane. Evidence of two heme centers. Biochim Biophys Acta 1468:1–5PubMedCrossRefGoogle Scholar
  219. Tsubaki M, Kobayashi K, Ichise T, Takeuchi F, Tagawa S (2000) Diethyl pyrocarbonate modification abolishes fast electron accepting ability of cytochrome b 561 from ascorbate but does not influence electron donation to monodehydroascorbate radical: identification of the modification sites by mass spectrometric analysis. Biochemistry 39:3276–3284CrossRefPubMedGoogle Scholar
  220. Van Beusichem ML, Nelemans JA, Bienfait HF (1988) Interrelationships between transplasma membrane electron/proton transfer stoichiometry, organic acid metabolism, and nitrate reduction in Dwarf bean (Phaseolus vulgaris). Plant Physiol 87:269–273PubMedGoogle Scholar
  221. Van Duijn MM, Buijs JT, van der Zee J, van den Broek PJA (2001a) The ascorbate:ascorbate free radical oxidoreductase from the erythrocyte membrane is not cytochrome b 561. Protoplasma 217:94–100CrossRefPubMedGoogle Scholar
  222. Van Duijn MM, van der Zee J, van den Broek PJA (2001b) The ascorbate-driven reduction of extracellular ascorbate free radical by the erythrocyte is an electrogenic process. FEBS Lett 491:67–70CrossRefGoogle Scholar
  223. Van Gestelen P, Asard H, Caubergs RJ (1996) Partial purification of a plasma membrane flavoprotein and NAD(P)H-oxidoreductase activity. Physiol Plant 98:389–398CrossRefGoogle Scholar
  224. Van Gestelen P, Asard H, Caubergs RJ (1997) Solubilization and separation of a plant plasma membrane NADPH-O-2(-) synthase from other NAD(P)H oxidoreductases. Plant Physiol 115:543–550PubMedGoogle Scholar
  225. Van Gestelen P, Asard H, Horemans N, Caubergs RJ (1998) Superoxide producing NAD(P)H-oxidase in plasma membrane vesicles from elicitor responsive bean plants. Physiol Plant 104:653–660CrossRefGoogle Scholar
  226. Velick S, Strittmatter P (1956) The oxidation-reduction stoichiometry and potential of microsomal cytochrome b 5. J Biol Chem 221:265–275PubMedGoogle Scholar
  227. Verelst W (2003) Molecular-biological characterisation and physiological function of cytochromes b 561 in higher plants. PhD Thesis, University of Antwerp, BelgiumGoogle Scholar
  228. Verelst W, Asard H (2003) A phylogenetic study of cytochrome b 561 proteins. Gen Biol 4:R38CrossRefGoogle Scholar
  229. Verelst W, Kapila J, de Almeida Engler J, Stone JM, Caubergs R, Asard H (2004) Tissue-specific expression and developmental regulation of Arabidopsis thaliana cytochrome b 561 genes. Physiol Plant 120:312–318CrossRefPubMedGoogle Scholar
  230. Vergères G, Waskell L (1995) Cytochrome b 5, its function, structure, and membrane topology. Biochimie 77:121–130CrossRefGoogle Scholar
  231. Vert GA, Franc J, Briat J-F, Curie C (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol 132:796–804CrossRefPubMedGoogle Scholar
  232. Vianello A, Macri F (1991) Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. J Bioenerg Biomembr 23:409–423CrossRefPubMedGoogle Scholar
  233. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci 59(9):1428–1459PubMedCrossRefGoogle Scholar
  234. Wakefield LM, Cass AEG, Radda GK (1984) Isolation of a membrane protein by chromatofocusing: cytochrome b-561 of the adrenal chromaffin granule. J Biochem Biophys Meth 9:331–341PubMedCrossRefGoogle Scholar
  235. Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94CrossRefPubMedGoogle Scholar
  236. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–376PubMedGoogle Scholar
  237. Widell S, Larsson C (1983) Distribution of cytochrome b photoreductions mediated by endogenous photosensitizer or methylene blue in fractions from corn and cauliflower. Physiol Plant 57:196–202CrossRefGoogle Scholar
  238. Widell S, Lundborg T, Larsson C (1982) Plasma membranes from oats prepared by partition in an aqueous polymer two-phase system. Plant Physiol 70:1429–1435PubMedCrossRefGoogle Scholar
  239. Wikström M, Krab K, Saraste M (1981) Proton-translocating cytochrome complexes. Annu Rev Biochem 50:623–655PubMedCrossRefGoogle Scholar
  240. Williams RJP (1985) Proton diffusion and the bioenergies of enzymes in membranes. In: Martonosi A (ed) The enzymes of biological membranes. Plenum Press, New York, pp 71–110Google Scholar
  241. Xing T, Higgins VJ, Blumwald E (1997b) Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to the plasma membrane of tomato cells. Plant Cell 9:249–259CrossRefPubMedGoogle Scholar
  242. Xu Y (1993) New insight of relationship of transplasma membrane redox activity to proton transport of corn roots. Master Thesis, Beijing UniversityGoogle Scholar
  243. Yamaguchi-Iwai Y, Dancis A, Klausner RD (1995) AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14:1231–1239PubMedGoogle Scholar
  244. Yamasaki H, Sakihama Y, Ikehara N (1997) Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2. Plant Physiol 115:1405–1412PubMedGoogle Scholar
  245. Yoshioka H, Sugie K, Park H-J, Maeda H, Tsuda N, Kawakita K, Doke N (2001) Induction of plant gp91phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Mol Plant Microb Inter 14:725–736CrossRefGoogle Scholar
  246. Yu L, Quinn MT, Cross AR, Dinauer MC (1998) Gp91phox is the heme binding subunit of the superoxide-generating NADPH oxidase. Proc Natl Acad Sci USA 95:7993–7998PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sabine Lüthje
    • 1
  • Michael Böttger
    • 1
  • Olaf Döring
    • 1
  1. 1.Biozentrum Klein Flottbek und Botanischer GartenUniversität HamburgHamburgGermany

Personalised recommendations