Skip to main content

An accuracy study of mesh refinement on mapped grids

  • Conference paper

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 41)

Summary

We test a high-resolution wave-propagation algorithm for hyperbolic conservation laws on mapped quadrilateral and hexahedral grids in the context of adaptive mesh refinement. We discuss some of the issues related to using non-Cartesian grids with AMR and study a test problem in which a grid refinement interface is fixed in space on a highly skewed portion of a mapped grid. Smooth and shock-wave solutions to the Euler equations are used to investigate the possibility that spurious reflections or other numerical errors might be generated at a grid interface.

Key words

  • gas dynamics
  • finite-volume
  • finite-difference
  • Cartesian grid
  • mapped grids
  • computational fluid dynamics
  • adaptive mesh refinement

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-27039-6_6
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-27039-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. Bell, P. Colella, J. Trangenstein, and M. Welcome. Adaptive mesh refinement on moving quadrilateral grids. Technical report, Lawrence Livermore National Laboratory, April 1989.

    Google Scholar 

  2. M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53:484–512, 1984.

    MathSciNet  CrossRef  Google Scholar 

  3. M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82:64–84, 1989.

    CrossRef  Google Scholar 

  4. M. J. Berger and R. J. LeVeque. AMRCLAW software. Available on the Web at the URL http://www.amath.washington.edu/~claw/.

    Google Scholar 

  5. M. J. Berger and R. J. LeVeque. Adaptive mesh refinement using wave propagation algorithms for hyperbolic systems. SIAM J. Num. Anal., 35(6):2298–2316, 1998.

    MathSciNet  CrossRef  Google Scholar 

  6. J. O. Langseth and R. J. LeVeque. A wave-propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys., 165:126–166, 2000.

    MathSciNet  CrossRef  Google Scholar 

  7. R. J.. LeVeque. CLAWPACK software. Available on the Web at the URL http://www.amath.washington.edu/~claw/.

    Google Scholar 

  8. R. J. LeVeque. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys., 131:327–353, 1997.

    MATH  CrossRef  Google Scholar 

  9. R. J. LeVeque. Finite volume methods for Hyperbolic problems. Cambridge University Press, 2002.

    Google Scholar 

  10. E. Steinthorsson, D. Modiano, and P. Colella. Computations of unsteady viscous compressible flows using adaptive mesh refinement in curvilinear body-fitted grid systems. Technical Report NASA Technical Memorandum 106704, NASA, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Calhoun, D., LeVeque, R.J. (2005). An accuracy study of mesh refinement on mapped grids. In: Plewa, T., Linde, T., Gregory Weirs, V. (eds) Adaptive Mesh Refinement - Theory and Applications. Lecture Notes in Computational Science and Engineering, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27039-6_6

Download citation