Front Tracking Algorithm Using Adaptively Refined Meshes

  • Zhiliang Xu
  • James Glimm
  • Xiaolin Li
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 41)


We propose a new algorithm which combines the front tracking with an adaptively refined Cartesian grid for solving systems of nonlinear conservation laws.


Contact Discontinuity Front Propagation Cartesian Grid Ghost Cell Front Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BO84.
    M. Berger, J. Oliger: Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations. J. Comp. Phys., 53, 484–512 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  2. BJ85.
    M. Berger, T. Jameson: Automatic Adaptive Grid Refinement for the Euler Equations. AIAA, 23, 561–568 (1985)CrossRefGoogle Scholar
  3. Ber87.
    M. Berger: Adaptive Finite Difference Methods in Fluid Dynamics. In: von Karman Lecture Notes on CFD NYU/DOE report 03077-277 (1987)Google Scholar
  4. BC89.
    M. Berger and P. Colella: Local Adaptive Mesh Refinement for Shock Hydrodynamics. J. Comp. Phys., 82, 64–84 (1989)CrossRefzbMATHGoogle Scholar
  5. GGMM88.
    C. L. Gardner, J. Glimm, O. McBryan, R. Menikoff, D. Sharp, and Q. Zhang: The Dynamics of Bubble Growth for Rayleigh-Taylor Unstable Interfaces. Phys. Fluids, 31, 447–465 (1988)CrossRefzbMATHGoogle Scholar
  6. CGSZ96.
    Y. Chen, J. Glimm, D. H. Sharp, and Q. Zhang: A Two-Phase Flow Model of the Rayleigh-Taylor Mixing Zone Phys. Fluids, 8, 816–825 (1996)CrossRefzbMATHGoogle Scholar
  7. LG96.
    X.-L. Li, and J. Glimm: A Numerical Study of Richtmyer-Meshkov Instability in Three Dimensions In: Proceedings of the Second Asia CFD Conference, Tokyo (1996)Google Scholar
  8. GGL98.
    J. Glimm, J.W. Grove, X.-L. Li, K.-M. Shyue, Q. Zhang, Y. Zeng: Three Dimensional Front Tracking SIAM J. Sci. Comp., 19, 703–727 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. GIM81.
    J. Glimm, E. Isaacson, D. Marchesin, and O. McBryan: Front Tracking for Hyperbolic Systems. Adv. Appl. Math., 2, 91–119 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  10. GGL99a.
    J. Glimm, J. W. Grove, X.-L. Li, and D. C. Tan: Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions. SIAM J. Sci. Comp., 21, 2240–2256 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  11. CGMP86.
    I-L. Chern, J. Glimm, O. McBryan, and B. Plohr: Front Tracking for Gas Dynamics J. Comp. Phys., 62, 83–110 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. GGL99.
    J. Glimm, J. W. Grove, X.-L. Li, and N. Zhao: Simple Front Tracking. In: Contemporary Mathematics, Amer. Math. Soc (1999)Google Scholar
  13. GGL00.
    J. Glimm, J. W. Grove, X.-L. Li, W. Oh, and H. Sharp: A Critical Analysis of Rayleigh-Taylor Growth Rates. J. Comp. Phys., 169, 652–677 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. CLB99.
    William Crutchfield, Vincent E. Beckner, Mike Lijewski, and Charles A. Rendleman,: Parallelization of Structured, Hierarchical Adaptive Mesh Refinement Algorithms. (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Zhiliang Xu
    • 1
  • James Glimm
    • 1
    • 2
  • Xiaolin Li
    • 1
  1. 1.Department of Applied Mathematics and StatisticsUniversity at Stony BrookUSA
  2. 2.Center for Data Intensive Computing, Brookhaven National LaboratoryUSA

Personalised recommendations